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Abstract

Training deep reinforcement learning agents on environments with multiple levels
/ scenes from the same task, has become essential for many applications aiming
to achieve generalization and domain transfer from simulation to the real world
[6,39]. While such a strategy is helpful with generalization, the use of multiple
scenes significantly increases the variance of samples collected for policy gradient
computations. Current methods, effectively continue to view this collection of
scenes as a single Markov decision process (MDP) and thus, learn a scene-generic
value function V (s). However, we show that the sample variance for a multi-scene
environment is best minimized by treating each scene as a distinct MDP, and
then learning a joint value function V (s, M) dependent on both state s and MDP
M. We further demonstrate that the true joint value function for a multi-scene
environment, follows a multi-modal distribution which is not captured by traditional
CNN / LSTM based critic networks. To this end, we propose a dynamic value
estimation (DVE) technique, which approximates the true joint value function
through a sparse attention mechanism over multiple value function hypothesis
/ modes. The resulting agent not only shows significant improvements in the
final reward score across a range of OpenAl ProcGen environments, but also
exhibits enhanced navigation efficiency and provides an implicit mechanism for
unsupervised state-space skill decomposition.

1 Introduction

While the field of reinforcement learning has shown tremendous progress in the recent years, general-
ization across variations in the environment dynamics remains out of reach for most state-of-the-art

deep RL algorithms [29, 38,40]. In order to achieve the generalization objective, many deep RL
approaches attempt to train agents on environments comprising of multiple levels or scenes from
the same task [5,6,20-22,39,42]. Although incorporating a wider source of data distribution in the

training itself has shown promise in bridging the train and test performance, the inclusion of multiple
scenes, each defined by a distinct underlying MDP, significantly increases the variance of samples
collected for policy gradient computations [5, 34].

The current approaches using multi-scene environments for training usually deal with the high
variance problem by deploying multiple actors for collecting a larger and varied range of samples.
For instance, [39,42] use multiple asynchronous actor critic (A3C) models when training on the
AI2-THOR framework based visual navigation task. Similarly, [5, 6] deploy parallel workers to
stabilize policy gradients for multi-level training on procedurally-generated game environments [21].
While parallel sample collection helps in stabilizing the learning process, the obvious disadvantages
of lower sample efficiency and higher hardware constraints, suggest the need for specialized variance
reduction techniques in multi-scene reinforcement learning.
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Most RL generalization benchmarks [0, 18,27, 41] effectively treat the collection of scenes as a
single-MDP environment. That is, a common and scene generic value function V'(s) is learned across
all levels. By comparison, we propose an improved variance reduction formulation, which instead
shows that the sample variance for a multi-scene environment is best minimized by acknowledging
each scene as a separate MDP and then learning a joint value function V (s, M) dependent on both
state s and MDP M.

However, given the lack of information about the operational level at train / test times, estimating
the joint value function V' (s, M) presents a challenging problem. To address this, we first show that
the underlying true joint value function samples follow a multi-modal distribution. We then use this
insight to propose a dynamic value estimation strategy, which approximates the overall value distribu-
tion through a progressively learned sparse attention mechanism over the corresponding distribution
modes. The sparse attention guided dynamic networks not only result in huge improvements in total
reward on the OpenAl ProcGen benchmark, but also exhibit semantically desirable properties like
enhanced navigation efficiency and provide a framework for unsupervised state space decomposition.

To summarize, the main contributions of this paper are as follows,

¢ Enhanced Variance Reduction. We propose an improved variance reduction formulation which
shows that the sample variance for a multi-scene environment is best minimized by treating the
each scene as a distinct MDP, and then learning a joint value function V (s, M) dependent on
both state s and MDP M.

* Clustering Hypothesis. We show that the true scene-specific value function distribution is best
described using a mixture model with multiple dominant modes, which are not fully captured by
the current CNN or LSTM based critic networks.

* Novel Critic Module. We propose a novel critic model which approximates the true multi-modal
value function distribution through a progressively learned sparse attention mechanism over
multiple value function hypothesis / modes.

» Implicit State-Space Decomposition: We demonstrate that the learned sparse attention divides
the overall state space into distinct sets of game skills. The collection of these skills represents a
curriculum that the agent must master for effective game play.

» Navigation Efficiency. Through both quantitative and qualitative results, we show that the sparse
dynamic model leads to huge improvements in the navigation efficiency of the resulting agent.
Furthermore, the high navigation efficiency of our method and its tendency to limit unnecessary
exploration, presents an effective alternative to explicit reward-shaping [24, 25, 39, 42], for
penalizing longer episode-lengths / reward-horizons in multi-scene reinforcement learning.

2 Problem Setup

A typical multi-scene environment is characterized by a set of possible MDPs M
{Mj, My, ..My}, each defined by its own state space S, transition probabilities P (s¢11]$¢, at),
reward function 7 (¢, at, S¢+1) and discount factor y. An agent with action space A interacts with
a randomly chosen and unknown MDP M € M, to generate a trajectory 7 : (So, ag, $1...S1) with
total reward R, = tT=_01 Yraa(se, at, s¢41). The goal of the agent is to maximize the expected
trajectory rewards over the entire MDP set M, i.e. E; o [Rrom]-

3 Motivation

In this section, we present a step-by-step analysis which motivates the final method presented in
Sec. 4. We first begin by proposing an improved variance reduction formulation for multi-scene
environments in Sec. 3.1. We then demonstrate the multi-modal nature of the joint value distribution
in Sec. 3.2. Finally we outline the main idea behind dynamic value estimation in Sec. 3.3.

3.1 Variance Reduction for Multi-Scene Environments

For a single-MDP environment, with policy network 7 (parameterized by #) and an action-value
function Q(s, a), the general expression for computing policy gradients with minimal possible sample



variance can be written as [15,31],

VoJ = E; o [(Vologm(als)) ¥(s,a)], (D

where ¥(s,a) = Q(s,a) — V(s) is the advantage function. Similarly for a multi-scene environment,
it can be shown that the optimal formulation for minimizing total sample variance is given by (please
refer supplementary material for proof),

Vo = By o [(Volog(als)) (s, a, M)], @

where (s, a, M) = Q(s,a, M) — V (s, M). Here Q(s, a, M) and V (s, M) represent the action-
value and value function respectively for the particular MDP M. However, since most of the time
knowledge about the operational MDP M is unknown to the agent, the current policy gradient
methods continue to use a single scene-generic value function estimate V(s) for variance reduction.
However, V(s) then is essentially an estimate of the global average over the underlying scene-specific
value functions {V(, (s), Vi, (8), ..., Vary (8)}, and thus gives a poor approximation of the joint
value function for a given MDP. We next show that such a simplification is not necessary and present
an approach for obtaining a better approximation for the joint value function V' (s, M).

3.2 Clustering Hypothesis

Training on multi-scene environments over the same domain task can lead to ambiguity in value
function estimation. That is, two visually similar states could have very different value function
estimates corresponding to distinct scenes / levels. In this section, we empirically demonstrate that
unlike a single-scene environment, the true value function for a multi-scene environment (having
scenes with similar state spaces), is better described by a multi-modal distribution.

Empirical Demonstration on OpenAl CoinRun . To test the above hypothesis, we finetune separate
critic networks over a fixed policy 7, to obtain the true MDP-specific value function estimates
{V(s,M1),V (s, Mz2), ...,V (s, Mso)} corresponding to a random selection of 50 levels from the
CoinRun ProcGen environment [6]. We then use a Gaussian Mixture Model (GMM) for fitting these
V (s, M;){i € [1,50]} samples. Results are shown in Fig. 1. We observe that the true value function
estimates form a multi-modal distribution that is not captured by traditional CNN or LSTM based
critic networks. (Please refer supplementary materials for further details.)
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Figure 1: Clustering Hypothesis. Column 1-2 demonstrate multi-modal nature of the true value
function distribution, for an intermediate policy m, on a set of randomly selected 50 levels from
the CoinRun environment. The true value estimate for a state image shown in Column 1 can be
characterized by one of the many clusters. Column 3: In contrast, the LSTM based value predictions,
though showing some variance with MDP M, fail to capture the multiple dominant modes exhibited
by the true value function distribution.



3.3 Minimizing Value Prediction Error

Theorem 1. The sample variance (v) for policy gradients defined by Eq. 2, can be minimized by
reducing the prediction error ¢ between the true joint value function V' (s, M) and the predicted

estimate V (s, M), where € = E, p[V (s, M) — V (s, M)]2.

The proof is provided in supplementary materials. We now use the insight provided by Theorem 1 to
propose the following solution for reducing the policy gradient sample variance.

Proposed Solution: While the exact estimation of the true joint value function V (s, M) is infeasible
without knowledge of MDP M, we use the results of Section 3.2, to assert that the prediction error
can be reduced by approximating the value function as the mean value of the cluster to which the
current MDP belongs. Fig. 2 provides an overview of this idea.
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4 Our method

The solution proposed in Section 3.3 can be implemented through a sparse attention mechanism
over the value function modes ;, wherein the attention parameters are 1 for the closest cluster
and 0 otherwise. However the sparse attention parameters are not fixed, as the cluster to which an
MDP belongs is expected to change while training the RL agent. To address this, we first model
the predicted value function through a generalized attention mechanism over the value function
modes (refer Section 4.1) and then propose a novel loss function which progressively enforces sparse
attention parameters based on the training dynamics (refer Section 4.2).

4.1 Continuous Dynamic Estimation Formalism

Mathematically, given that the true value function follows a Gaussian Mixture Model (GMM) like,

Ny,
P (V (s, M)|se) = > pi N(V(st, M) | i, 07), 3)
i=1
we propose to model the predicted value function as,
R Ny Ny
Vs, M) = Z a;(sg, M) pi(se), st a; >0, Zai = 1. 4)
i=1 i

That is, given a state s;, we predict IV, distinct value function hypotheses {11 (s), 12(s), ..., i, (5)}
(one corresponding to each cluster). The final value prediction is then modelled as the weighted com-
bination of these value hypotheses using attention parameters «;. Wherein, the attention parameters
;(s¢, M) are used to capture the similarity between the i** value hypothesis and the true value for
MDP M. In practice, since the current MDP M is not known, the parameters «; are learned from
(state, episode trajectory) pairs {s;, 7'"} (7'~ : {s0, ao, ....s;_1} is the trajectory till time ¢ — 1),
using a Long Short Term Memory (LSTM) [16] network.

4.2 Enforcing Sparse Attention

We first define two metrics to describe the attention parameter distribution, confusion and contribution.
Confusion () is a measure of uncertainty as to which cluster, the current state-trajectory pair



{st, Tt_} belongs to. On the other hand, contribution (p), as the name suggests, determines the
“contribution” of a cluster in the overall value function estimation across a general trajectory sequence
7 : {80, a0, S1, a1, ...s7}. Formally, confusion and contribution are defined as,

1
- Np. 2% a?(st,ﬁ*)

1 T
5(8t77—t_) ) pl(T) = T Z 6(St77—t_) O{i(St, Tt_)' (5)
t=1

We now note that an increase in sparsity of cluster assignments {1, as, ... ay,} is equivalent to
maximization of their /s norm. Thus using Eq. 5, it corresponds to minimization of the confusion (J)
metric. However, a mere enforcement of sparsity may encourage convergence to solutions where
only one of the clusters is active. We also want to ensure that each cluster contributes equally in the
(s, M) space. To achieve this, we propose the following confusion-contribution loss,

Ny,
LYY =k E,, ;o [logd(se, 77)] + k2 E; llog (Z p?(’r))] . (6)

The above sparse loss is then used in conjunction with the policy and value-function loss while
training the RL agent. However, we emphasize that the state space must already be well explored'
prior to the application of confusion-contribution loss. If applied prematurely, due to the continuous
nature of neural networks, the sparse cluster assignment maybe incorrectly generalized across the
entire state space. This could lead to a detrimental impact on value function estimation for the
currently unexplored states. Also, such a mistake is hard to recover from, because for any state s € S,
the sparse assignment ensures that the gradients for all but one cluster are approximately zero.

S Experiments

In this section, we mainly aim to pursue the following three goals 1) Understand how dynamic
value estimation (DVE) effects both train and test time performance on different multi-scene environ-
ments. 2) Demonstrate the advantage of DVE as a framework for learning unsupervised state space
decomposition and 3) Analyse the enhanced navigation efficiency resulting after applying DVE.

We test our method on the hard distribution setting of different multi-scene environments from the Ope-
nAl ProcGen [5] benchmark: (Coinrun, Caveflyer, Climber, Jumper, Chaser, Bigfish,
Plunder). Following [5], we adopt the “500 level generalization” as our evaluation protocol. In
particular, an agent is trained on a set of 500 levels from a given ProcGen environment, and evaluated
for its performance on the remaining unseen levels. All models adopt an IMPALA-CNN-LSTM [11]
architecture and are trained using the Proximal policy optimization (PPO) [32] algorithm, which is
ran with 4 parallel workers (GPUs) for gradient computations as this is seen to enhance performance.
Each worker is trained for 50M steps, thus equating to a total of 200M steps across all the 4 workers.
All results and standard deviations are reported as the average across 4 random seeds. Additional
evaluation on the challenging visual navigation benchmark, along with further hyperparameter and
implementation details are provided in the supplementary material.

5.1 Impact on Train and Test Performance

We compare the proposed dynamic value estimation (DVE) strategy with a range of recent works
aimed at increasing the generalization performance in deep reinforcement learning. In particular, we
include comparisons with batch-normalization which outperforms other regularization techniques
in [6], along with the cutout-color, random-crop and random-convolution based data-augmentation
strategies which show high-performance according to [23]. Furthermore, we also compare our
method with ITER [19], IBAC-SNI [18] and MixReg [37], which are all designed specifically with
the purpose of improving generalization performance on the OpenAl Procgen benchmark.

Results are shown in Table 1. We clearly see that DVE outperforms baseline PPO by a large margin
on both train and test performance. We also note that, as seen in [37], the use of data-augmentation
strategies from RAD [23] while helpful on a couple of environments, often leads to significantly

"For OpenAlI ProcGen, we consider state space to be sufficiently explored when the avg. episode length plateaus
/ starts decreasing. Please refer supplementary material for further details.



Train Performance

Method \ CoinRun Caveflyer Climber Jumper Chaser Bigfish Plunder
PPO [32] 7.7840.3 6.79+1.1 759+09  6.61£05  7.4140.7 1057409  5.8240.5
BatchNorm [6] 9.01+0.6 5.26+0.6 8.67+03  6.24+03  8.69+0.5 1438423  8.63+0.2
RAD (Cutout-color) [23] 8.214+0.7 4.93+04 7.38+0.5 639405  3.2340.1 10.36+0.8  8.03+0.7
RAD (Random-crop) [23] 5.984+0.2 5.2240.3 3.56+02  4.12+0.1 3.214+0.2 3.1740.2 5.404+0.3
RAD (Random-conv) [23] 6.724+0.3 4.4740.2 534402 644406 2.7540.1 3.45+40.2 5.74+0.4
ITER [19] 8.3440.5 6.4240.4 921+12 6.84+0.7 552408 10.5440.7  4.86+0.5
IBAC-SNI[18] 8.094+0.3 6.07+0.5 7.67£04  637+£03  7.2940.2 12.50+1.2  4.584+0.6
MixReg [37] 8.751+0.4 8.64+0.2 929405 7.16104  7.58+0.4 13.08+1.6  7.89+0.4
DVE (Ours) 9.574+0.1  11.59+0.3  9.95+0.7 6.65+0.1 9.64+03 14.70+1.1  9.67+0.8
Test Performance
Method ‘ CoinRun Caveflyer Climber Jumper Chaser Bigfish Plunder
PPO [32] 6.25+0.5 531+14 522405 3.03£02  6.994+0.8 5.81+0.4 3.64+0.4
BatchNorm [6] 7.1240.3 3.8740.5 6.17+£0.3  295+02 7.47+04 7.25+1.6 5.96+0.3
RAD (Cutout-color) [23] 6.82+0.6 3.684+0.4 520+04 2.88+04 2.86+0.3 6.31+0.6 6.1440.6
RAD (Random-crop) [23] 5.4610.2 3.234+0.2 3.2840.1  2.43+0.1 2.3940.2 2.04+0.1 4.69+0.4
RAD (Random-conv) [23] 5.374+0.3 2.86+0.2 334402 281+£03  2.36%0.1 2.58+0.2 4.82+0.3
ITER [19] 7.1940.4 541404 7.57+11 3.53+05 547408 6.83+10.2 373403
IBAC-SNI [18] 7.0440.1 5.174+0.6 729404  3.1440.1 7.1440.3 8.28+0.7 3.624+0.4
MixReg [37] 6.724+0.4 5.86+0.3 7.1240.1 4.01+04 736404 8.09+1.1 5.4140.1
DVE (Ours) 7.431+0.2 8.08+0.2 7.41+£0.3 332402  8.44+0.2 9.43+0.9 6.23+0.5

Table 1: Final performance comparison. The proposed dynamic value estimation (DVE) approach

results in significant improvements over the previous works in both train and test performance.

worse performance on both train and test levels. Furthermore, we note that while DVE does not
focus on generalization specifically (but improves both train and test performance by learning a better
value estimate), it still consistently outperforms other generalization methods on all test environments
(except the Jumper environment). In particular, averaged over all test environments, we see that DVE
leads to a test-time performance improvement of 39.4%, 27.5%, 11.5%, 29.63% and 24.3% over the

PPO, BatchNorm, MixReg, ITER and IBAC-SNI methods respectively.

5.2 Learning Implicit State Space Decomposition

Skill 1

Skill 2

Cluster 2 Cluster 1

Cluster 3

Figure 3: Visualizing Cluster Features. Examples of key obstacles types learned by each cluster
in the CoinRun Environment. We note that the sparse training divides the overall state space into a
distinct sets of game skills.
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A key advantage of our method can be seen in its ability to achieve an unsupervised division of the
state space into distinct sets of game skills. The state space decomposition is achieved through the
sparse cluster assignments, wherein the network learns to assign each state, trajectory pair {s;, 7/~ }
to a distinct value cluster. In this section, we use this sparse property of our method to visualize
different obstacle types characteristic of each cluster in the CoinRun Environment.

To visualize the distinguishing features for each cluster, we first extract the set of states S; for which
each cluster is active. The latent representations (output of the LSTM network) for these states
are then used to map each s € S; to a two dimensional embedding space using TSNE [26]. This
embedding is then manually analysed for clusters to then identify the salient obstacle classes.

Fig. 3 shows some key obstacle types for each cluster. We observe that each cluster is responsible for
predicting the value function on a distinct set of obstacles/skills. For instance, Cluster-1 is responsible
for value estimation in cases like double-jump from one side to another (Skill-1) and crossing over
moving enemies (Skill-2). On the other hand, Cluster-2 handles landing after jumps from higher
ground (Skill-1) and high jumps with very limited visibility of coming obstacles (Skill-2). Finally,
Cluster-3 takes care of precision climbs (Skill-1) and jumps over wide valleys (Skill-2).

Thus, we see that each disjoint state space set S;, i € [1, N} ] represents a distinct curriculum of game
skills that must be learned for mastering the overall multi-scene game environment. This division is
semantically desirable and is analogous to the human learning paradigm wherein it is quite common
to break down a complex task into a set of manageable skills before attempting the complete task.

5.3 Enhanced Navigation Efficiency

Navigation Efficiency (Total reward / Episode length) [x107%]

Method | CoinRun  Caveflyer ~Climber Jumper Chaser Bigfish  Plunder
PPO [32] 6.14 3.03 4.21 2.80 2.24 1.47 1.24
MixReg [37] 8.46 3.51 3.98 3.34 2.04 1.88 1.52
DVE (Ours) 14.08 15.42 5.99 8.52 3.09 2.01 1.73

Table 2: Navigation Efficiency Comparison. Comparing the navigation efficiency between DVE,
PPO and MixReg (which is the most consistent baseline beside DVE as per Table 1). We clearly
see that DVE leads to significant increase in the overall navigation efficiency i.e. it achieves higher
rewards while needing much shorter episode lengths (per reward unit).

In addition to reporting results for average episode reward, we also compare model performance
based on the agent’s efficiency in completing a game level. The navigation efficiency is thus measured
by the ratio of the final reward and average episode length. Results are reported in Table 2. We
clearly see that DVE leads to better reward scores while on average, using much fewer timesteps per
episodez. For instance, we see that the DVE leads to an increase of 129.6%, 408.9% & 204.4% (over
baseline PPO) in the reported navigation efficiency scores, for the CoinRun, CaveFlyer, and Jumper
environments respectively. This massive increase in navigation efficiency results from two reasons,

» The tendency to use fewer time-steps is a direct consequence of optimizing the discounted
reward function with v < 1 [31]. As a result, the agent is incentivized to minimize the
number of steps between the current state and the next reward. Hence, more accurate policy
updates (with lower sample variance) should lead to fewer timesteps.

* As explained in Sec. 4.2, the expansion in state space after application of the confusion-
contribution loss can lead to potential errors in value function estimation. Thus, the sparse
dynamic agent learns to maximize the utilization of the already explored state space.

We next qualitatively analyse how learning a more accurate value function leads to shorter (and effi-
cient) episode trajectories for the sparse DVE agent. Note that the computation of a suboptimal value
function at a critical environment state (e.g. a tricky obstacle) can cause the agent to underestimate
the advantage of choosing an action which leads to a faster route to the final destination / goal. We
next try to identify these critical states by comparing episode trajectories for the baseline PPO and
DVE agents on the CaveFlyer environment.

*Note that the ProcGen environments have no explicit penalty for discouraging longer episode lengths.
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Figure 4: Comparing Navigation Efficiency. Demonstrating qualitative difference between suc-
cessful trajectories for baseline PPO and sparse DVE agents. Our method shows higher efficiency in
navigating to the final goals (red & green spheres).

Game Description. The goal of the Caveflyer environment (Fig. 4) is to destroy the red spheres
and finally reach the green sphere while avoiding intermediate obstacles. The agent receives a
small reward of +3 on destroying a red sphere and an end of episode reward of +10 on successfully
reaching the green one. Direct collisions with an obstacle or the red sphere cause immediate episode
termination.

Trajectories for both baseline PPO and sparse DVE agents are shown in Fig. 4. We see that the
baseline PPO agent after destruction of the red sphere (critical state), effectively restarts its search for
the next target, while often revisiting already encountered states. In contrast, the sparse DVE agent
with its more accurate value estimates, realizes that the expected value for exploring unseen parts
of the cave is much higher than revisiting previous states. Doing so not only helps the DVE agent
reach the end goals much faster, but also eliminates the need for evading obstacles that it has already
crossed (thereby increasing the episode success rate).

We also note that, the balance between the sparse model’s reluctance towards state space expansion
and maximization of total reward can be modulated through the scale of coefficients (k1, k2) of the
confusion-contribution loss. In this regard, the high navigation efficiency of our method provides an
effective alternative to designing explicit reward shaping penalties [25,39,42] for promoting reduced
episode lengths.

6 Related Work

Meta Reinforcement Learning. Duan e? al. [10] previously proposed the use of recurrent neural
networks and episode trajectories as a meta-RL approach for adapting to environment dynamics.
While in theory, an LSTM is capable of learning multi-modal distributions, we find that in practice the
vanilla-LSTM based conditional value function distribution (for a given state) is usually characterized
by a single dominant mode (refer Fig. 1), and thus fails to capture the multi-modal nature of true
value function distribution. In contrast, our method explicitly forces multiple dominant modes while
estimating the cluster means ; and uses episode trajectories to compute the assignment («;) of the
current state sample to each cluster.

Generalization in Reinforcement Learning. Recently, multi-scene environments have been exten-
sively used to study and address the problem of overfitting in RL. [6] deploy standard regularization
techniques from supervised learning like dropout, batch-normalization, L2-regularization to counter
overfitting when training on the multi-scene CoinRun environment. [23,37] improve generalization
performance by increasing the diversity of training data observations. [19] reduce overfitting by
minimizing non-stationarity while training the RL agent. Noise injection techniques like [18,35] add
noise to the model parameters in order to improve the generalization capability. Our work is different
as it does not focus on generalization specifically, but improves both train and test time performance
by learning a better value function estimate. Furthermore, we note that our approach is orthogonal to
these works and would likely also benefit from the use of different regularization methods.



Recurrent Independent Mechanisms. Goyal ef al. [14] propose modular structures called Re-
current Independent Mechanisms (RIMs) which specialize to different dynamic processes within
an environment, and communicate sparingly through a sparse attention mechanism. While RIMs
and our method share the idea of having sparse attention, our work differs significantly as RIMs
use separate recurrent models with independent dynamics, whereas we deploy a single actor-critic
network with shared dynamics. Another important distinction is that [14] assume a sparse structure
from the beginning and hence require environments with clearly independent dynamic processes.
In contrast, the sparse assignment in our method is learned progressively and only after sufficient
exploration, which allows for a more informed division of the state space (refer Sec. 5.2).

Distributional RL. Recent works like [1,4,7] aim to directly learn the value function distribution
instead of modelling the expected return. Our work differs in the following aspects. First, distribu-
tional RL methods need to discretize the return space using a high number of support locations/nodes
(e.g. N = 200 for [1]) to approximate the overall value distribution. In contrast, we approximate
the joint value function through only the modes of the underlying distribution and thus require very
few output nodes (N € [2, 5]). Second, the current work on distributional RL is limited to off-policy
methods with a shared replay buffer. The use of a large replay buffer implies that the overall sample
distribution changes minimally from one update to another. This is in sharp contrast to the high
variance seen in on-policy training which is the focus of current work. To the best of our knowledge,
our work is the first stable method for approximating value distribution in on-policy RL.

Bootstrapped DQN. Osband et al. [28] propose the use of multi-head Q-networks for bootstrapped
DQNs. However, they aim to facilitate deep exploration and hence select the Q-network head for a
given episode randomly. In contrast, we aim to reduce the prediction error with the true value function
distribution and also present a novel approach which progressively learns the most representative
cluster for each state s € S through the confusion-contribution loss.

7 Conclusion

This paper introduces a novel dynamic value estimation strategy for enhanced variance reduction in
multi-scene reinforcement learning environments. The proposed approach consistently outperforms
the current generalization methods on both train and test performance for a range of OpenAl
ProcGen environments, while exhibiting much higher navigation efficiency to complete a game level.
Additionally, we observe that the learned sparse attention parameters divide the overall state space
into disjoint subsets. We show that each subset focuses on a distinct set of game-skills, which is
semantically desirable and draws a strong parallel with the human learning paradigm.

8 Potential Societal Impacts

Positives. While our work is largely theoretical, we believe that in the long term, it will have major
impact in the upcoming area of Al-inspired learning [30]. Recent years have seen the field of deep
reinforcement learning demonstrate tremendous success in achieving super-human performance in
complex game play. Deepmind’s Alphazero [33], Alphastar [36] and OpenAI’s Dota-2 [2] are some
salient examples. Each such milestone is followed by an increased public interest to analyse and
break down the policy of the trained RL agent into a set of simple skills than can be consumed by a
human learner [9,30]. This process is often manual and involves painstaking analysis across hundreds
of game runs. As shown in Section 5.2, our method does this automatically by dividing the possible
game scenarios (states) into distinct sets of game skills. While each set can be composed of other
mini-skills, the broad division achieved by our method promises great potential in the development
of semi-automatic, Al-inspired teaching tools for human players.

Potential Negatives. Another societal impact can be envisioned in the field of robotics and social
healthcare. An improvement in visual navigation performance (refer supp. material for experiments)
within a controlled environment, has the potential to be used in the development of caretaker robots
for the elderly [17]. This can be associated with a number of ethical concerns as detailed in [, 13].
However, as shown by the success of healthcare robots like Moxi [3, 12] in the current COVID
pandemic, assistive healthcare robots can work efficiently along-side human nurses by performing
time-consuming / repetitive tasks. Thus, overall we believe that the positive benefits of our work by
far outweigh such potential concerns.
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