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Figure 1. Overview. We propose a novel stroke based guided image synthesis framework which (Left) resolves the intrinsic domain shift
problem in prior works (b), wherein the final images lack details and often resemble simplistic representations of the target domain (e)
(generated using only text-conditioning). Iteratively reperforming the guided synthesis with the generated outputs (c) seems to improve
realism but it is expensive and the generated outputs might lose faithfulness with the reference (a) with each iteration. (Right) Additionally,
the user is also able to specify the semantics of different painted regions without requiring conditional training or finetuning.

Abstract
Controllable image synthesis with user scribbles has

gained huge public interest with the recent advent of text-
conditioned latent diffusion models. The user scribbles con-
trol the color composition while the text prompt provides
control over the overall image semantics. However, we note
that prior works suffer from an intrinsic domain shift prob-
lem wherein the generated outputs often lack details and
resemble simplistic representations of the target domain.
In this paper, we propose a novel guided image synthesis
framework, which addresses this problem by modelling the
output image as the solution of a constrained optimization
problem. We show that while computing an exact solution
to the optimization is infeasible, an approximation of the
same can be achieved while just requiring a single pass of
the reverse diffusion process. Additionally, we show that

by simply defining a cross-attention based correspondence
between the input text tokens and the user stroke-painting,
the user is also able to control the semantics of different
painted regions without requiring any conditional train-
ing or finetuning. Human user study results show that the
proposed approach outperforms the previous state-of-the-
art by over 85.32% on the overall user satisfaction scores.
Source code and demo are available at our project page
https://1jsingh.github.io/gradop.

1. Introduction

Guided image synthesis with user scribbles has gained
widespread public attention with the recent advent of large-
scale language-image (LLI) models [25, 28, 30, 32, 42]. A
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novice user can gain significant control over the final image
contents by combining text-based conditioning with unsu-
pervised guidance from a reference image (usually a coarse
stroke painting). The text prompt controls the overall image
semantics, while the provided coarse stroke painting allows
the user to define the color composition in the output scene.

Existing methods often aim attempt to achieve this
through two means. The first category leverages condi-
tional training using semantic segmentation maps [8, 30,
41]. However, the conditional training itself is quite time-
consuming and requires a large scale collection of dense se-
mantic segmentation labels across diverse data modalities.
The second category, typically leverages an inversion based
approach for mapping the input stroke painting to the target
data manifold without requiring any paired annotations. For
instance, a popular solution by [16, 23, 37] introduces the
painting based generative prior by considering a noisy ver-
sion of the original image as the start of the reverse diffusion
process. However, the use of an inversion based approach
causes an intrinsic domain shift problem if the domain gap
between the provided stroke painting and the target domain
is too high. In particular, we observe that the resulting out-
puts often lack details and resemble simplistic representa-
tions of the target domain. For instance, in Fig. 1, we notice
that while the target domain consists of realistic photos of a
landscape, the generated outputs resemble simple pictorial
arts which are not very realistic. Iteratively reperforming
the guided synthesis with the generated outputs [4] seems
to improve realism but it is costly, some blurry details still
persist (refer Fig. 4), and the generated outputs tend to lose
faithfulness to the reference with each successive iteration.

To address this, we propose a diffusion-based guided im-
age synthesis framework which models the output image as
the solution of a constrained optimization problem (Sec. 3).
Given a reference painting y, the constrained optimization
is posed so as to find a solution x with two constraints: 1)
upon painting x with an autonomous painting function we
should recover a painting similar to reference y, and, 2) the
output x should lie in the target data subspace defined by the
text prompt (i.e., if the prompt says “photo” then we want
the output images to be realistic photos instead of cartoon-
like representations of the same concept). Subsequently, we
show that while the computation of an exact solution for
this optimization is infeasible, a practical approximation of
the same can be achieved through simple gradient descent.

Finally, while the proposed optimization allows the user
to generate image outputs with high realism and faithful-
ness (with reference y), the fine-grain semantics of differ-
ent painting regions are inferred implicitly by the diffusion
model. Such inference is typically dependent on the gener-
ative priors learned by the diffusion model, and might not
accurately reflect the user’s intent in drawing a particular
region. For instance, in Fig. 1, we see that the light blue re-

gions can be inferred as blue-green grass instead of a river.
To address this, we show that by simply defining a cross-
attention based correspondence between the input text to-
kens and user stroke-painting, the user can control seman-
tics of different painted regions without requiring semantic-
segmentation based conditional training or finetuning.

2. Related Work
GAN-based methods have been extensively explored

for performing guided image synthesis from coarse user
scribbles. [1–3, 15, 29, 39, 44] use GAN-inversion for pro-
jecting user scribbles on to manifold of real images. While
good for performing small scale inferences these methods
fail to generate highly photorealistic outputs when the given
stroke image is too far from the real image manifold. Con-
ditional GANs [7,14,19,22,26,38,45] learn to directly gen-
erate realistic outputs based on user-editable semantic seg-
mentation maps. In another work, Singh et al. [36] propose
an image synthesis framework which leverages autonomous
painting agents [20, 34, 35, 46] for inferring photorealistic
outputs from rudimentary user scribbles. Despite its effi-
cacy, this requires the creation of a new dataset and condi-
tional training for each target domain, which is expensive.

Guided image synthesis with LLI models [6,25,28,30,
32,42,43] has gained widespread attention [9,13,16,18,21,
31, 33] due to their ability to perform high quality image
generation from diverse target modalities. Of particular in-
terest are works wherein the guidance is provided using a
coarse stroke painting and the model learns to generate out-
puts conditioned on both text and painting. Current works in
this direction typically 1) use semantic segmentation based
conditional training [8, 30, 41] which is expensive, or, 2)
adopt an inversion-based approach for mapping the input
stroke painting to the target data manifold without requiring
paired annotations. For instance, Meng et al. [16, 23] pro-
pose guided image synthesis framework, wherein the gener-
ative prior is introduced by simply considering a noisy ver-
sion of the original sketch input as the start of the reverse
diffusion process. Choi et al. [5] propose an iterative con-
ditioning strategy wherein the intermediate diffusion out-
puts are successively refined to move towards the reference
image. While effective, the use of an inversion-like ap-
proach causes an implicit domain shift problem, wherein
the output images though faithful to the provided reference
show blurry or less textured details. Iteratively reperform-
ing guided synthesis with generated outputs [4] seems to
improve realism but it is costly. In contrast, we show that it
is possible to perform highly photorealistic image synthesis
while just requiring a single reverse diffusion pass.

Cross-attention control. Recently, Hertz et al. [10] pro-
pose a prompt-to-prompt image editing approach with text-
conditioned diffusion models. By constraining the cross-
attention features of all non-targeted text tokens to remain
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Figure 2. Method Overview. (a) Given a reference painting y and text prompt τtext, we first formulate the guided synthesis problem as the
solution x⋆ of a constrained optimization problem with 2 properties: 1) x⋆ lies in the subspace Sτtext of outputs conditioned only on the
text, and, 2) upon painting x we should recover reference painting y. While computing an exact solution of this optimization is infeasible,
we show that an approximation can be obtained by solving the unconstrained optimization in (b). Here we first use gradient descent to
compute a point x⋆ close to a random sample xτtext ∈ Sτtext , while still minimizing the painting loss L(f(x), y). This x⋆ is usually
non-photorealistic due to gradient descent. We therefore use the diffusion based inversion from [37] to map it back to target domain Sτtext .

the same, they show that by only modifying the text prompt,
it is possible to perform diverse image editing without
changing the underlying structure of the original input im-
age. In contrast, we use cross-attention control for from-
scratch synthesis and show that by simply defining a cross-
attention based correspondence between input text tokens
and the user stroke-painting, it is possible to control and
define the fine-grain semantics of different painted regions.

3. Our Method
Let f : Dreal → Dpaint be a function mapping a real in-

put image x to its painted image f(x). Then given a colored
stroke image y and input text prompt τtext, we formulate
the computation of output image x⋆ as the solution to the
following constrained optimization problem,

x⋆ = argminx L (f(x), y) (1)
subject to x ∈ Sτtext

(2)

where L (f(x), y) represents a distance measure between
the painted output f(x) of image x and the target painting
y, while Sτtext represents the subspace of output images
conditioned only on the text input.

In other words, by additionally conditioning on a stroke
image y, we wish to find a solution x⋆ such that 1) the dis-
tance between the painted image of x and reference painting
y is minimized, while at the same time ensuring 2) the final
solution lies in the subspace of images conditioned only on
the text prompt τtext. For instance, if the text says “a real-
istic photo of a tree” then the use of stroke-based guidance
should still produce a “realistic photo”, wherein the com-
position of the tree regions is controlled by the painting y.

3.1. GradOP: Obtaining an Approximate Solution

The optimization problem in Eq. 1 can be reformulated
as an unconstrained optimization problem as,

x⋆ = argminx L (f(x), y) + γ d(x,Sτtext
), (3)

where d(x,Sτtext
) represents a distance measure between x

and subspace Sτtext , and γ is a hyperparameter.
A cursory glance at the above formulation should make

it evident that the computation of an exact solution is infea-
sible without first generating a large enough sample size for
the Sτtext

subspace, which will be quite time consuming.
To address this, we propose to obtain an approximate

solution by estimating d(x,Sτtext) through the distance of
x from a single random sample xτtext

∈ Sτtext
. Thus, we

can approximate the optimization problem as follows,

x⋆ = argminx L (f(x), y) + γ d(x, xτtext
). (4)

Assuming a latent diffusion model with decoder D, we can
rewrite the above above optimization in latent space as,

z⋆ = argminz L (f(D(z)), y) + γ ∥z − zτtext
∥2. (5)

where the image output x⋆ can be computed as x⋆ = D(z⋆).
In order to solve the above optimization problem, we first

use the diffusion model to sample xτtext
∈ Sτtext

. Initializ-
ing z = E(xτtext

), where E represents the encoder, we solve
the above optimization using gradient descent (assuming f
and L are differentiable). Finally, we note that the solution
x⋆ = D(z⋆) to the above approximation of the optimiza-
tion problem might be non-photorealistic due to gradient
descent. We therefore use the diffusion based inversion ap-
proach from [16] in order to map it to the target image man-
ifold. Please refer Alg. 1 for the detailed implementation.
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Algorithm 1 GradOP: Solution Approximation
Input: Stroke Painting y, text prompt τtext
Output: Output image x conditioned on both τtext, y
Require: Differentiable painting function f , differentiable
distance measure L, hyperparameter γ, t0.

1: Sample xτtext ∈ Sτtext ;
2: Initialize z = zτtext

= E(xτtext
);

3: for 0 ≤ i ≤M do
4: Ltotal = L (f(D(z)), y) + γ ∥z − zτtext

∥2;
5: z = z − λ∇zLtotal;
6: end for
7: zt0 = FORWARDDIFF(z⋆ = z, 0→ t0);
8: z = REVERSEDIFF(zt0 , t0 → 0);
9: return xout = D(z).

3.2. GradOP+ : Improving Sampling Efficiency

While the guided synthesis solution in Alg. 1 shows great
output results, for each output image it first requires the
sampling of a text-only conditioned output xτtext

∈ Sτtext
.

To address this, we propose a modified guided image syn-
thesis approach which allows for equally high quality out-
puts while requiring just a single reverse diffusion pass for
each output. Our key insight is that a lot of information in
z⋆ is discarded during the forward diffusion from z⋆ → zt0 .
Thus, instead of performing the optimization to first com-
pute z⋆, we would like to directly optimize the intermedi-
ate latent states zt by injecting the optimization gradients
within the reverse diffusion process itself (refer Fig. 3).

In particular, at any timestep t during the reverse diffu-
sion, we wish to introduce optimization gradients in order
to solve the following optimization problem,

z⋆t = argminz L (f(D(z)), y) + γ ∥z − zt∥2. (6)

However, the introduction of gradients will cause z⋆t to not
conform with the expected latent distribution at timestep t.
We therefore pass it through the forward diffusion process
in order to map it back to the expected latent variable distri-
bution. Please refer Alg. 2 for the detailed implementation.

3.3. Controlling Semantics of Painted Regions

Finally, while the above approximate guided image syn-
thesis algorithm allows for generation of image outputs with
high faithfulness and realism, the semantics of different
painted regions are inferred in an implicit manner. Such
inference is typically based on the cross-attention priors
(learned by the diffusion model) between the provided text
tokens and the input painting throughout the reverse diffu-
sion process. For instance, in the first example from Fig. 5,
we note that for different outputs, the blue region can be in-
ferred as a river, waterfall, or a valley. Also note that some
painting regions might be entirely omitted (e.g. the brown

Painting Recovery Set

Optimization Step

Forward Diff. Step

Reverse Diff. Step

Latent Variables

Generation Output

Figure 3. GradOP+ Overview. At any timestep t, the optimiza-
tion in Eq. 6 (zt → z⋆t ) reduces the painting recovery loss, while
the forward diffusion step z⋆t → z̃t maps it back to the expected
latent distribution. By iteratively performing this optimization,
GradOP+ modifies the reverse sampling trajectory to lead to out-
put xout = D(z0) which is also faithful to the target painting y.

Algorithm 2 GradOP+ : Improving Sampling Efficiency
Input: Stroke Painting y, text prompt τtext
Output: Output image x conditioned on both τtext, y
Require: Differentiable painting function f , distance mea-
sure L, hyperparameter γ, t0, tstart, tend.

1: Sample zT ∼ N (0, I);
2: for 0 ≤ t < T do
3: zt = REVERSEDIFF(zt+1, t+ 1→ t);
4: if tstart ≤ t ≤ tend then
5: Initialize z = zt;
6: for 0 ≤ i ≤M do
7: Ltotal = L (f(D(z)), y) + γ ∥z − zt∥2;
8: z = z − λ∇zLtotal;
9: end for

10: zt = FORWARDDIFF(z⋆t = z, 0→ t)
11: end if
12: end for
13: return xout = D(z0).

strokes for the hut), if the model does not understand that
the corresponding strokes indicate a distinct semantic entity
e.g. a hut, small castle etc. Moreover, as shown in Fig. 5
such discrepancies persist even if the corresponding text to-
kens (e.g. a hut) are added to the textual prompt.

Our key motivation is that the when generated faithfully,
the average attention maps across different cross-attention
layers show high overlap with the target object segmenta-
tion during the initial to intermediate parts of the reverse
diffusion process. In our experiments, we found the reverse
to also be true. That is, by constraining the cross attention
map corresponding to a target semantic label to have a high
overlap with the desired painting region, it is possible to
control the semantics of different painting regions without
the need for segmentation based conditional training.

In particular, given the binary masks corresponding to
different painting regions {B1, . . .BN} and the correspond-
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ing semantic labels {u1, . . . uN}, we first modify the input
text tokens as follows,

τmodified = τ + {CLIP(ui) | i ∈ [1, N ]} , (7)

where τ is the set of CLIP [27] tokens for input text prompt.
At any timestep t ∈ [0, T ] during the reverse diffusion

process, we then enforce semantic control by modifying the
cross-attention mapAi

t corresponding to label ui as follows,

Ãi
t = wi

[
(1− κt) Ai

t + κt
Bi
∥Bi∥F

∥Ai
t∥F

]
(8)

where ∥.∥F represents the Frobenius norm, κt = t/T ∈
[0, 1] helps regulate the overlap between the cross-attention
output Ãi

t and the desired painting region Bi during the re-
verse diffusion process, and, weights wi, i ∈ [1, N ] help
the user to control the relative importance of expressing dif-
ferent semantic concepts in the final image.

4. Experiments
Implementation Details. We use publicly available text-

conditioned latent diffusion models [30,40] for implement-
ing the purposed approach in Sec. 3. The constrained op-
timization is performed using gradient descent with the
Adam [17] optimizer and number of gradient steps Ngrad ∈
[20, 60] (please refer Sec. 5.2 for detailed analysis). While
several formulations of the distance measure L and painting
function f are possible (refer supp. material for details), we
find that simply approximating the function L using mean
squared distance and f as a convolution operation with a
gaussian kernel seems to give the fastest inference time per-
formance with our method. For consistency reasons, we use
the non-differentiable painting function from SDEdit [23]
while reporting quantitative results (refer Sec. 4.1).

4.1. Stroke Guided Image Synthesis

Evaluation metrics. Given an input stroke painting, we
compare the performance of our approach with prior works
in guided image synthesis when no paired data is available.
The performance of the final outputs is measured in terms
of both faithfulness of the generated image with the target
stroke painting as well as the realism of the final output dis-
tribution. In particular, given an input painting y and output
real image prediction x, we define faithfulness F(x, y) as,

F(x, y) = L2(f(x), y) (9)

where f(.) is the painting function. Thus an output image x
is said to have high faithfulness with the given painting y if
upon painting the final output x we get a painting ỹ = f(x)
which is similar to the original target painting y.

Similarly, given a set of output data samples S(y, τtext)
conditioned on both painting y and text τtext, and, S(τtext)

Method
Evaluation criteria User Study Results
F(x, y) ↓ R(.) ↓ Realism ↑ Satisfaction ↑

SDEdit [23] 88.93 223.8 94.09 % 91.98%
Loopback [4] 104.6 132.9 54.28 % 85.32%
ILVR [5] 108.2 161.7 76.54 % 93.47%
Ours 94.40 134.2 N/A N/A

Table 1. Quantitative Evaluations. (Left) Method comparison
w.r.t faithfulness F to the reference painting and realism R to the
target domain. (Right) User-study results, showing % of inputs for
which human subjects prefer our approach over prior works.

conditioned only on the text, the realismR is defined as,

R(S(y, τtext)) = FID (S(y, τtext),S(τtext)) (10)

where FID represents the Fisher inception distance [11].
Baselines. We compare our approach with prior works

on guided image synthesis from stroke paintings with no
paired data. In particular we show comparisons with, 1)
SDEdit [23] wherein the generative prior is introduced by
first passing the painting y through the forward diffusion
pass y → yt0 [16, 37], and then performing reverse diffu-
sion yt0 → y0 to get the output image x = y0

1. 2) SDEdit +
Loopback [4] which reuses the last diffusion output to itera-
tively increase the realism of the final output. 3) ILVR2 [23]:
which uses an iterative refinement approach for condition-
ing the output x of the diffusion model with a guidance im-
age y. Unless otherwise specified, we use the GradOP+
algorithm (refer Alg. 2) when reporting evaluation results.

Qualitative Results. Results are shown in Fig. 4. We
observe that both proposed approximate optimization meth-
ods (i.e. GradOP in row-1,2 and GradOP+ in row-3,4) lead
to output images which are both highly photorealistic as
well as faithful with reference painting. In contrast, while
SDEdit [23] shows high faithfulness to the input painting,
the final outputs lack details and resemble more of a pic-
torial art rather than realistic photos. Iteratively reperform-
ing the guided synthesis with the generated outputs (SDEdit
+ Loopback [4]) helps improve the realism of output im-
ages, however, we find that this has two main disadvan-
tages. First, the iterative loop increases the effective time
required for generating each data sample (e.g. four reverse
sampling steps instead of just one). Second, we note that
as the number of successive iterations increase the final out-
puts become less and less faithful to the original painting in-
put. Finally, ILVR [5] leads to more realistic outputs, how-
ever, the final outputs are not fully faithful to the reference
painting in terms of the overall color composition.

1Please note that due to space constraints, we primarily use the standard
hyperparameter value of t0 = 0.8 in the main paper, and refer the reader
to the supp. material for detailed comparisons with changing t0 ∈ [0, 1].

2Please note that the original ILVR [5] algorithm was proposed for iter-
ative refinement with diffusion models in pixel space. We adapt the ILVR
implementation for inference with latent diffusion models [30] for the pur-
poses of this paper. Please refer supp. material for further details.
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Figure 4. Qualitative comparisons. We compare the performance of our approach with prior works [4, 5, 23] based on their faithfulness to
the provided reference, and the realism with respect to the target domain (generated by conditioning only on the text prompt). Please note
that for our results, we show the GradOP (Alg. 1) and GradOP+ (Alg. 2) outputs in row 1,2 and row-3,4 respectively.

Quantitative Results. In addition to qualitative results
we also quantitatively evaluate the final outputs on the faith-
fulness F(x, y) and targeted-realism R(.) metrics defined
earlier. Additionally, similar to [23] we also perform a hu-
man user study wherein the realism and the overall satis-
faction score (faithfulness + realism) are evaluated by hu-
man subjects (please refer supp. material for details). Re-

sults are shown in Tab. 1. We find that as expected, while
SDEdit [23] leads to the best faithfulness with the target
painting, it exhibits very poor performance in terms of the
realism score. SDEdit with loopback [4] improves the real-
ism score but the resulting images start loosing faithfulness
with the given reference. In contrast, our approach leads
to the best tradeoff between faithfulness to the target im-
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Figure 5. Controlling semantics of different painted regions. We compare image generation outputs (Col 2-4) using the cross-attention
control approach from Sec. 3.3 with outputs (Col 5-7) generated by only modifying the input text prompt. Note that for each semantic
guide (Col 2), the text prompt modification is performed by adding the corresponding semantic labels at the end of the text prompt. For
instance, the modified text prompt for examples in row-1 would be “a fantasy landscape, trending on artstation showing a hut”.

age and realism with respect to the target domain. These
findings are also reflected in the user-study results wherein
our method is preferred by > 85.32% of human subjects in
terms of the overall satisfaction score.

4.2. Controlling Semantics of Painted Regions

Results are shown in Fig. 5. We observe that in absence
of semantic attention control, the model tries to infer the se-
mantics of different painting regions in an implicit manner.
For instance, the orange strokes in the sky region can be in-
ferred as the sun, moon, or even as a yellow tree. Similarly,
the brown strokes in the lower-left region (intended to draw
a hut or small castle) are often inferred as muddy or rocky
parts of the terrain. Moreover, such disparity continues even
after modifying the input prompt to describe the intended
semantic labels. For instance, in row-1 from Fig. 5, while
changing the text prompt to include the text “hut” leads to
the emergence of “hut” like structures, the inference is often
done in a manner that is not intended by the user.

In contrast, by ensuring a high overlap between the in-
tended painting regions and the cross-attention maps for
the corresponding semantic labels (refer Sec. 3.3), we are
able to generate outputs which follow the intended seman-
tic guide in a much more accurate manner. For instance, the
user is able to explicitly specify that the brown regions on
the ground describes a hut (row 1) or castle (row 2-4). Sim-
ilarly, the semantics of different regions can be controlled,
e.g. the blue region is specified as a river or waterfall, the

orange strokes in the sky is specified as moon or sun etc.

5. Analysis
5.1. Variation in Target Domain

In this section, we analyse the generalizability of the
our approach across different target domains (e.g. children
drawings, disney scenes) and compare the output perfor-
mance with prior works. Results are shown in Fig. 6-a. We
observe that our approach is able to adapt the final image
outputs reliably across a range of target domains while still
maintaining a high level of faithfulness with the target im-
age. In contrast, SDEdit [23] generates outputs which lack
details and thereby look very similar across a range of target
domains. SDEdit + Loopback [4] addresses this problem to
some extent, but it requires multiple reverse diffusion passes
and the generated outputs tend to lose their faithfulness to
the provided reference with each iteration.

5.2. Variation with Number of Gradient Steps

In this section, we analyse the variation in output perfor-
mance as we change the number of gradient descent steps
Ngrad used to solve the unconstrained optimization prob-
lem in Sec. 3. Results are shown in Fig. 6-b. As expected,
we find that for Ngrad = 0, the generated outputs are sam-
pled randomly from the subspace of outputs (Sτtext

) condi-
tioned only on the text. As the number of gradient-descent
steps increase, the model converges to a subset of solutions
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Figure 7. Out-of-distribution performance. Analysing success
(top) and failure (bottom) cases for out-of-distribution prompts.

within the target subsapce Sτtext
which exhibit higher faith-

fulness with the provided reference. Please note that this
behaviour is in contrast with SDEdit [23], wherein the in-
crease in faithfulness to the reference is corresponded with
a decrease in the realism of the generated outputs [23].

5.3. Out-of-Distribution Generalization

As shown in Sec. 4, 5, we find that the proposed ap-
proach allows for a high level of semantic control (both
color composition and fine-grain semantics) over the output
image attributes, while still maintaining the realism with re-

spect to the target domain. Thus a natural question arises:
Can we use the proposed approach to generate realistic
photos with out-of-distribution text prompts?

As shown in Fig. 7, we observe that both success and
failure cases exist for out-of-distribution prompts. For in-
stance, while the model was able to generate “realistic pho-
tos of cats with six legs” (note that for the same inputs prior
works either generate faithful but cartoon-like outputs, or,
simply generate regular cats), it shows poor performance
while generating “a photo of a rat chasing a lion”.

6. Conclusions
In this paper, we present a novel framework for perform-

ing guided image synthesis synthesis with user scribbles,
without the need for paired annotation data. We point that
prior works in this direction [4, 5, 23], typically adopt an
inversion-like approach which leads to outputs which lack
details and are often simplistic representations of the tar-
get domain. To address this, we propose a novel formula-
tion which models the guided synthesis output as the solu-
tion of a constrained optimization problem. While obtain-
ing an exact solution to this optimization is infeasible, we
propose two methods GradOP and GradOP+ which try to
obtain an approximate solution to the constrained optimiza-
tion in a sample-efficient manner. Additionally, we show
that by defining a cross-attention based correspondence be-
tween the input text tokens and user painting, it is possible
to control semantics of different painted regions without the
need for semantic segmentation based conditional training.
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Supplementary Material
High-Fidelity Guided Image Synthesis with Latent Diffusion Models

A. Additional Results
In this section, we provide additional results which could

not be included in the main paper due to space constraints.
In particular, we note that baseline methods like SDEdit
[23] can often be run using different values of the hyper-
parameter t0. We therefore provide additional results com-
paring the performance of SDEdit at different t0 ∈ [0, 1]
(refer Sec. A.1). Additionally, we introduce some custom
baselines (which could be used for improving the realism
of final image outputs) and show results comparing their
output performance with our approach (refer Sec. A.2).

A.1. Additional Comparisons with SDEdit

Recall, given a stroke painting y, SDEdit [23] follows
an inversion-based approach for performing guided image
synthesis. In particular, the generative prior is introduced
by first passing the painting y through the forward diffusion
pass y → yt0 [16,37], and then performing reverse diffusion
yt0 → y0 to get the output image x = y0. Due to space
constraints, we primarily use the standard hyperparameter
value of t0 = 0.8 in the main paper. In this section, we
provide additional results which comprehensively compare
our approach with SDEdit [23] under changing values of t0.

Qualitative Comparisons. Results are shown in Fig. 9,
10. We observe that for lower values of t0, SDEdit gener-
ates outputs which though highly faithful to the reference
painting, lack details and represent simplistic representa-
tions of the target domain. Increasing the value of hyper-
parameter t0 helps improve realism but the outputs become
less and less faithful with the reference painting. In con-
trast, we find that the proposed approach leads to outputs
which are both faithful to the reference painting as well as
exhibit high realism w.r.t the target domain (which is gener-
ated using only text prompt conditioning).

Quantitative Comparisons. In addition to qualitative re-
sults, we also report quantitative results by analysing the
relationship between the faithfulness F and realismR met-
rics (refer Sec. 4.1 of main paper), under changing values
hyperparameter t0. Results are shown in Fig. 8. We ob-
serve that as compared to prior works, our method provides
the best tradeoff generating realistic outputs and maintain-
ing faithfulness with the provided reference painting.

Realism:

F
a
it
h
fu
ln
e
s
s
:

Latent Variables

Loopback

SDEdit

ILVR

Ours

Figure 8. Visualizing faithfulness-realism tradeoff. We anal-
yse the tradeoff between faithfulness-realism distances for differ-
ent methods (note that lower is better for both metrics). We ob-
serve that as compared to prior works, our method provides the
best tradeoff between generating realistic outputs and maintaining
faithfulness with the provided reference painting.

A.2. Comparison with Custom Baselines

In this section, we introduce some custom methods (as
baselines) for increasing the realism of generated outputs
with SDEdit [23], and then compare the output performance
for the same with our approach. In particular, we show ad-
ditional comparisons with the following custom baselines,

• Attention Re-weighting (AttnRW) [10] wherein the re-
alism w.r.t the target domain is enhanced by increasing
the attention weighting for the corresponding domain spe-
cific text tokens (e.g. photo, painting etc.). For instance,
if the text prompt says “a photo of a tree”, then we aim to
increase the realism of the generated outputs by increas-
ing the weightage of the cross-attention maps correspond-
ing to the the word “photo” [10]. Results are shown in
Fig. 11. We observe that while increasing the weightage
of domain specific text tokens (e.g. photo, painting etc.)
helps improve the realism of the output images to some
extent, the final images still lack details and certain blurry
regions still persist (e.g. grass in row-1). Furthermore,
the increase in realism is accompanied by some image ar-
tifacts e.g. blotched image regions in row 1-4, image-in-
image artifacts in row 4-8 etc. In contrast, we find that our
method provides a more practical approach for increasing
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Figure 9. Additional comparisons. We provide comprehensive comparisons with SDEdit [23] under changing value of hyperparameter t0.
We find that SDEdit [23] either generates faithful but cartoon-like outputs for low t0, or, generates realistic but unfaithful outputs at high
t0. In contrast, our approach leads to outputs which are both realistic (w.r.t the target domain) as well as faithful (to the provided reference).
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Figure 10. Additional comparisons. We provide comprehensive comparisons with SDEdit [23] under changing value of hyperparameter
t0. We find that SDEdit [23] either generates faithful but cartoon-like outputs for low t0, or, generates realistic but unfaithful outputs at high
t0. In contrast, our approach leads to outputs which are both realistic (w.r.t the target domain) as well as faithful (to provided reference).
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Figure 11. Comparison with Custom Baselines - AttnRW [10]. We compare the performance of our method with the Attention Reweight-
ing (AttnRW) approach for increasing realism w.r.t the target domain. We find that increasing the weight of cross attention maps corre-
sponding to the domain-specific text tokens (e.g. photo in above), leads to improved realism of the generated outputs. However, we note
that certain blurry details persist e.g. grass in row 1-4. Also, the increase in realism is accompanied by some image artifacts e.g. blotched
regions in row 1-4, image in image artifacts in row 4-8 etc. In contrast, our approach improves output realism in a more coherent manner.

the output realism in a semantically coherent manner.

• Increasing Classifier Guidance Scale [12], wherein we
attempt to increase the realism of the SDEdit [23] outputs
by increasing the scale of classifier free guidance used
during the reverse diffusion process. Results are shown
in Fig. 12. We observe that while increasing the scale
of classifier free guidance improves the level of detail
in the generated images, the final outputs still resemble
cartoon-like or simplistic representations of the target do-
main. Furthermore, we also note that our approach can
also benefit from the increase in guidance scale in order
to increase the level of fine-grain detail in the output im-
ages (e.g. details of castle, water reflections in Fig. 12).

B. Experiment Details

B.1. Implementation Details

In this section, we provide further details for the imple-
mentation of our approach as well as other baselines used
while reporting results in the main paper.

Ours. We use publicly available text-conditioned latent
diffusion models [30,40] for implementing the purposed ap-
proach in the main paper. The constrained optimization is
performed using gradient descent with the Adam [17] op-
timizer and number of gradient steps Ngrad ∈ [20, 60].
While several formulations of the distance measure L and
painting function f are possible (refer Sec. C), we find that
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Figure 12. Comparison with Custom Baselines - CFG [12]. We analyse the impact of increasing the classifier-free guidance scale αcfg on
outputs generated using SDEdit [23] and our method. We find that while increasing the value of αcfg leads to increase in level of details,
the final outputs still represent simplistic representations of the target domain (row-3). Furthermore, as the value of αcfg is increased, the
faithfulness with respect to the reference painting is compromised (e.g. red regions in row-1).

simply approximating the function L using mean squared
distance and f as a convolution operation with a gaussian
kernel seems to give the fastest inference time performance
with our method. For consistency with prior works, we use
the non-differentiable painting function from SDEdit [23]
while reporting quantitative results. All results are reported
using the DDIM sampling [37] with 50 inference steps for
performing the reverse diffusion process.

SDEdit [23]. We use the standard image-to-image
pipeline from the open-source diffusers library [40] for re-
porting results for SDEdit [23] with different values of hy-
perparameter t0 ∈ [0, 1]. Similar to our method, all re-
sults are reported at 512×512 resolution using DDIM sam-
pling [37] with 50 inference steps for performing the reverse
diffusion process. Unless otherwise specified, a classifier-
free guidance scale [12] of 7.5 is used for all experiments.

SDEdit + Loopback [4]. We use the previously de-
scribed SDEdit implementation and iteratively reperform
guided synthesis with the previous diffusion outputs to im-
prove realism of the generated outputs. In particular, we use
Niter = 4 iterations for the iterative process. Also, similar
to [4], in order to increase the realism of generated outputs
with each iteration, the hyperparameter t0 is updated as,

tn+1
0 ← min(tn0 · k, 1.0), k ∈ [1.0, 1.1] (11)

where n ∈ [1, Niter] is the iteration number. Unless other-
wise specified, we use the standard hyperparameter selec-

tion of k = 1.05 and tn=1
0 = 0.8 for our experiments.

ILVR [5]. The original ILVR [5] algorithm was pro-
posed for iterative refinement with diffusion models in pixel
space. We adapt the ILVR implementation for inference
with latent diffusion models [30] for the purposes of this pa-
per. In particular given a reference painting y, the original
ILVR algorithm modifies the diffusion output xt (in pixel
space) at any timestep t during reverse diffusion process as,

x̃t = ϕN (yt) + xt − ϕN (xt), yt ∼ q(yt | y) (12)

where q(yt | y) represents the forward diffusion process
from y → yt, ϕN (.) is a low pass filter achieved by scaling
down the image by a factor of N and then upsampling it
back to the original dimensions. Assuming a latent diffu-
sion model with encoder E and decoderD, we simply adapt
the above update in latent space as follows,

xt = D(zt) (13)
zy = E(y), zyt ∼ q(zyt | zy) (14)

x̃t = ϕN (yt) + xt − ϕN (xt), yt = D(zyt) (15)
z̃t = E(x̃t) (16)

where Eq. 13, 16 map the latent features zt to pixel space xt,
and vice-versa. Eq. 14 computes yt from y by first mapping
y to zy , computing the forward diffusion zy → zyt

and then
reverting back zyt

to yt. Finally, Eq. 15 is simply the origi-

15



nal update rule from ILVR algorithm [5]. A hyperparmeter
value of N = 4 is used while reporting results.

B.2. Quantitative Experiments

Data Collection. Since there is no predefined dataset
for guided image synthesis with user-scribbles and text
prompts, we create our own dataset for reporting quantita-
tive results. In particular, we first collect a set of 100 stroke
painting and text prompt pairs from diverse data modalities
with the help of actual human users. We then augment the
collected data using a prompt-engineering approach to in-
crease the diversity of the collected data pairs. In particular,
the text prompt for each data-pair is modified in order to in
order to replace the domain specific text words (e.g. photo,
painting) with pre-designed target domain templates, while
keeping the underlying content the same. During prompt
engineering, the target domain template is chosen randomly
from [ ‘photo’,‘watercolor painting’, ‘Vincent Van Gogh
painting’,‘children drawing’,‘high resolution disney scene’,
‘high resolution anime scene’, ‘fantasy scene’,‘colored pen-
cil sketch’]. For each data pair, we then sample four ran-
dom guided image synthesis outputs for each baseline and
our method. The resulting dataset consists of 800 (painting,
text-prompt) pairs and 3200 overall samples from diverse
data modalities for final method evaluation.

Quantitative Metrics. In order to evaluate the perfor-
mance of our approach, we introduce two metrics for mea-
suring the faithfulness of the output w.r.t the reference paint-
ing, and the realism of the generated samples w.r.t the tar-
get domain (specified through text-only conditioning). In
particular, given an input painting y and output real image
prediction x, we define faithfulness distance F(x, y) as,

F(x, y) = L2(f(x), y) (17)

where f(.) is the painting function. Thus an output image x
is said to have high faithfulness with the given painting y if
upon painting the final output x we get a painting ỹ = f(x)
which is similar to the original target painting y (Fig. 13).

The painting function f is implemented using the human
stroke-simulation algorithm from SDEdit [23]. In particu-
lar, given an 256 × 256 input image, the output painting is
computed by first passing the image through a median filter
with kernel size 23, and then perform color quantization to
reduce the number of colors to 20 using an adaptive palette.

Similarly, given a set of output data samples S(y, τtext)
conditioned on both painting y and text τtext, and, S(τtext)
conditioned only on the text, the realismR is defined as,

R(S(y, τtext)) = FID (S(y, τtext),S(τtext)) (18)

where FID represents the Fisher inception distance [11].
Please note that while the above defined realism dis-

tance measure R captures the realism with respect to the

Reference 
Painting:   .

Generation 
Output:   

Painting Reconstruction

Figure 13. Visualizing input painting y, output x and painted re-
construction ỹ = f(x). The goal is to generate an output x which
is realistic and for which painting loss L2(f(x), y) is minimized.

target domain, we expect the computed FID scores to be
higher than those expected of unconditioned image outputs.
This is because while the proposed method generates out-
puts which seem realistic to human eyes, the variance of
output distribution is significantly lower than that of real
images. The decreased variance in output images occurs
simply because the layout and color composition are pre-
dominantly fixed as a result of additional conditioning on
the stroke painting y. In contrast, natural images or images
conditioned only on the text prompt have a much higher di-
versity in terms of scene layout and the overall color com-
position. We therefore try to overcome of lack of diversity
in generated image outputs by performing random data aug-
mentations (random horizontal flip and random resized crop
of size 448× 448 on a 512× 512 image) while computing
the final realism scores across different methods 3.

Human User Study. In addition to reporting quantita-
tive results using the above defined measures for faithful-
ness and realism, similar to [23], we also perform a hu-
man user study wherein the realism and the overall satis-
faction score (faithfulness + realism) are evaluated by ac-
tual human users. For the realism scores, given an input
text prompt (with target domain τdomain e.g. τdomain =
‘photo’) and sample images conditioned only on the text
prompt, the participants were shown a pair of image gen-
eration outputs comparing our method with prior works.
For each pair, the human subject is then asked to select
the output image which is more realistic with respect to
the target domain (τdomain). Similarly, for computing the
overall satisfaction scores, given an input stroke painting,
text prompt and sample images conditioned only on the text

3Note that while this helps increase the diversity in scene layout the
diversity in color composition is still lower than that of real images or
image outputs conditioned only on the text prompt.
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Figure 14. Visualizing the effect of GradOP on cross attention maps. We analyse the effect of our approach on the cross-attention maps
generated during the reverse diffusion process. We find that our method leads to cross-attention outputs which help the model pay better
attention to desired image areas in the reference painting. For instance, in the first example, the cross-attention features show high overlap
with the desired dog and field regions. In contrast, the cross attention maps from SDEdit [23] reveal that the model is not paying adequate
attention to the desired image areas (e.g. field in row-1, tree and forest in row-3) while generating the final output.

prompt, the participants were shown a pair of image gener-
ation outputs comparing our method with prior works. For
each pair, the instruction is: “Given the input painting and
text prompt, how would you imagine this image to look like
in reality? Your selection should be based on how realistic
and less blurry the image is (please check level of details),
consistency with the target domain (τdomain) and whether
it is faithful with the reference painting in terms of scene
layout, color composition”. For each task (e.g. computing
overall satisfaction score), the collected data samples (dis-
cussed above) were divided among 50 human participants,
who were given an unlimited time in order to ensure high
quality of the final results. Additionally, in order to remove
data noise, we use a repeated comparison (control seed) for
each user. Responses of users who answer differently to this
repeated seed are discarded while reporting the final results.

C. Method Analysis: Continued

C.1. Effect of GradOP on Cross Attention Maps

As shown by Hertz et al. [10] and our results, the cross-
attention maps corresponding to different words in the input
text prompt play a key role in deciding the overall semantic
contents of the final image output. In this section, we try to
analyse how the proposed approach leads to more realistic
image content generation by analysing the average cross-

attention maps generated while performing the reverse dif-
fusion process with SDEdit [23] and our method.

Results are shown in Fig. 14. We find that our method
leads to cross-attention outputs which help the model pay
better attention to desired image areas in the reference paint-
ing. For instance, in the first example, the cross-attention
features show high overlap with the desired dog and field
regions. In contrast, the cross attention maps from SDEdit
[23] reveal that the model is not paying adequate attention
to the some desired image areas (e.g. field in row-1, forest
in row-3) while generating the final output.

C.2. Semantic Control without Painting Guidance

Recall that in addition to performing high-fidelity guided
image synthesis, we also show that by simply defining a
cross attention based correspondence between the input text
tokens and the user painting, it is possible to control the se-
mantics of different image regions without the need for any
semantic segmentation based conditional training. In this
section, we analyse whether similar semantic control is pos-
sible without having additional guidance through a stroke
painting. In particular, we wish to analyse if such fine-grain
control is only possible while providing additional guidance
through the reference stroke painting?

To answer this question, we compare the outputs gen-
erated through semantic control with and without using a
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Figure 15. Analysing role of painting guidance in semantic control. We analyse the effect of using an underlying reference painting as
guidance in controlling the semantics of different image areas using cross-attention based correspondence approach presented in the main
paper (refer Sec. 3.3 in main paper). We find that additional guidance using reference stroke painting helps the user gain much accurate
control over the semantics of different image regions (e.g. lake in row-3,4, mountains in row-3, rocks, forest in row-4 etc.).

reference painting for the guided synthesis process. Results
are shown in Fig. 15. We observe that while for it is feasi-
ble to define the semantics of one or two parts of the image
accurately using cross-attention correspondence, the perfor-
mance decreases as the number of semantic labels increases
(e.g. lake in row-3,4, mountains in row-3, rocks, forest in
row-4 etc.). In contrast, we find that the use of a reference
painting results in much better control over the semantics of
different image regions. We believe that the same is because
the use of a reference painting sets up a generic semantic
structure for the output image which can then be easily re-
fined by defining a cross-attention based correspondence.
For instance, in row-4 of Fig. 15, adding the blue strokes
for lake region sets up a semantic prior which constrains
the inference of output semantics to semantic categories like
river, lake, sea, stream, blue-green grass, blue pavement etc.
The use of semantic correspondence then helps refine these
output semantics to what is actually desired by the user. In
contrast, without stroke guidance, the initial semantics for
lake region could me much more diverse (e.g. sand, rocky
terrain in row-4), and thereby more challenging to refine
through the proposed semantic correspondence strategy.

C.3. Inference Time Analysis

We report a comparison of the average inference times
required for each output image in Tab. 2. All results are

reported using the DDIM sampling [37] with 50 inference
steps, on a single Nvidia RTX 3090 GPU.

Method
Inference Time (s)

w/o mixed precision with mixed precision [24]
SDEdit [23] 6.32 s 4.45 s
Loopback [4] 27.2 s 20.46 s
ILVR [5] 8.24 s 6.17 s
GradOP (Ours) 20.1 s 15.8 s
GradOP+ (Ours) 12.3 s 8.86 s

Table 2. Inference time analysis. Comparing inference time re-
quired for generating each output image for different methods. All
results are reported with DDIM sampling and 50 inference steps.

C.4. Variation in Painting Function

Please recall that a key requirement for solving the pro-
posed constrained optimization in Sec. 3 is to define a dif-
ferentiable painting function f , which provides a good ap-
proximation for “how a human would paint a given image
with coarse user-scribbles”. In this section, we therefore
look at some possible formulations for obtaining an approx-
imation of the painting function in a differentiable manner,
and compare the corresponding output results.

Painting Function Formulation. In particular, we con-
sider three main formulations for constructing a differen-
tiable painting function f , 1) Median Filter + Color Quan-
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Figure 16. Analysing performance for different differentiable ap-
proximations of the painting function f . We find that while using a
more accurate painting function [23] (Col-2) leads to slightly more
details (e.g. notice the gradient of the grass regions in row-1, de-
tailed shadows of the castle and island in row-2), in practice more
simpler approximations (e.g. Gaussian Blur) also produces highly
realistic outputs while allowing for much faster inference times.

tization, wherein we implement a differentiable approxima-
tion of the human-stroke simulation algorithm in [23]. In
particular, given a reference painting y and output x, we first
pass x through a median filter of size 23. We then pass the
output of the last step through a differentiable color quanti-
zation function which maps the image pixels to their nearest
rgb value in the painting y (that is, we are performing color
quantization w.r.t the palette of the reference painting.) 2)
Median Filter wherein we use the median filter alone for
approximating the painting function, and 3) Gaussian Blur
wherein approximate the painting function through a convo-
lution operation with a Gaussian kernel (size 31 and σ=7).

Results are shown in Fig. 16. We observe that while the
use of a more accurate human-stroke simulation function
from [23] allows for the generation of slightly more detailed
outputs (e.g. notice the gradient of the grass regions in row-
1, detailed shadows of the castle and island in row-2), it in-
creases the overall inference time required for the proposed
gradient descent optimization (40.7s on GradOP+). In con-
trast, we find that using much more simpler approximations
(e.g. Median Filter, Gaussian Blur) for the painting func-
tion also produces highly realistic outputs while allowing
for much faster inference times (8.86s, 14.1s on GradOP+
for Gaussian Blur and Median Filter respectively).
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