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Abstract

While I don’t have a strict set of favorite research papers, I believe that my affinity
towards a research paper is highly determined by the extent to which I am able to
apply the presented ideas from a paper in my own research, or whether I am able
to form multiple novel interpretations for the introduced concepts. The following
is a list of representative research papers overlapping with my research interests.
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1 Meta-RL

1.1 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (MAML)

Conference. ICML 2017, Finn et al. (2017)

Objectives. For any general collection of tasks, in RL or supervised learning, find an initialization of
network parameters θ such that gradient descent updates from that point on a new task lead to quick
learning/adaptation.

Merits.

• Novelty. The paper proposes to model the adaptation step in meta-learning through an
optimization procedure. In contrast, prior works take a black-box approach and model the
adaptation function using a recurrent neural network.

• Generalization. In contrast to black-box approaches, using an optimization based adapta-
tion procedure allows for more flexible adaptation to out-of distribution states that were not
encountered during meta-training, thus leading to a better generalization performance.

• Model-agnostic. The proposed meta-learning framework can be applied in conjunction
with any model design that uses gradient decent for optimization.

• Multiple interpretations. In addition to interpreting the proposed approach as an
optimization based alternative to performing the inner loop in meta-learning, the intuition
for MAML can also be justified using the following mathematical interpretation.

Given a policy πθpa|sq with parameter θ, distribution of tasks Ti „ ppT q, and task-specific
losses Li, the adaptation and loss computation steps for MAML can be written as follows,

Adaptation: θ1
i Ð θ ´ α∇θLipθq (1)

Overall Loss: Lpθq “
ÿ

i

Lipθ1
iq (2)

Performing a first-order Taylor series expansion for the overall loss,

Lpθq “
ÿ

i

Lipθ1
iq (3)

“
ÿ

i

Lipθ ´ α∇θLipθqq (4)

«
ÿ

i

Lipθq ´ αp∇θLipθqq2 (5)

Thus, we see that the overall loss function tries to minimize the sum of task-specific losses
(which is the usual multi-task approach), and in-addition aims to maximize the sensitivity
of the losses to the changes in θ, which is expressed in the second term as the square of
gradient of the task-specific loss functions.

2 Visual Navigation

2.1 Learning to Learn How to Learn: Self-Adaptive Visual Navigation using Meta-Learning

Conference. CVPR 2019, Wortsman et al. (2019)

Objectives. The authors use the continuity of the human learning process to argue that an agent must
learn from the environment interactions at both train and test times. Thus, they propose to learn a loss
function (interaction loss) that mimics the gradients of the navigation loss at training time.

Merits.

1. Novelty. The paper proposes a continuous learning mechanism, wherein the agent learns
from environment interactions during both train and inference times.
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2. Effective use of meta-learning. The authors propose an effective meta-learning procedure
to learn an interaction loss, used for self-supervised adaption to unseen test environments.

3. Comparison with MAML. The final training objective makes exemplary use of the math-
ematical interpretation of MAML (discussed above), to minimize both the training-time
navigation loss and learn an inference-time interaction loss. To see this, first consider the
used training objective,

min
θ

ÿ

τPTtrain

Lnav
`

θ ´ α∇θLintpθ,Dint
τ q,Dnav

τ q
˘

. (6)

Taking a first order Taylor expansion, we can decompose the objective as follows,

« min
θ

ÿ

τPTtrain

Lnavpθ,Dnav
τ q ´ α x∇θLnavpθ,Dnav

τ q,∇θLintpθ,Dint
τ qy (7)

Thus, we clearly see that the overall objective aims to minimize the navigation loss on the
training tasks (first term), while maximizing the inner product / similarity between gradients
for the navigation and interaction loss (second term).

3 Generalization in RL

3.1 Quantifying Generalization in Reinforcement Learning

Conference. ICML 2019, Cobbe et al. (2018)

Merits. While not highly mathematical, this paper (along with work by Packer et al. (2018)) provides
a great foundation on factors affecting generalization in reinforcement learning.

• Need for more stochastic RL environments. The authors show through experiments on
procedurally generated game environments (OpenAI ProcGen), that the number of distinct
game levels / scenes required for achieving perfect generalization far exceeds the number
used by prior work. This points to the presence of overfitting in previous RL benchmarks
and highlights the need for introducing more stochasticity in RL training environments.

• Generalization Metric. In contrast with supervised learning, the prior works in reinforce-
ment learning measured both training and test performance on the same environment. The
paper highlights the disadvantage of such an approach and presents a standard generalization
metric to evaluate overfitting in reinforcement learning.

• Factors affecting Generalization. The paper evaluates the impact of different forms of
regularization (e.g. stochastic policies, synthetic data augmentation, noisy environment
dynamics) on the generalization performance in reinforcement learning.

4 Motivations from Computer Vision

4.1 SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation.

Conference. CVPR 2020, Wang et al. (2020)

Summary. The paper tackles the problem of monocular depth estimation by incorporating scene
priors from semantic and instance segmentation with a divide and conquer strategy. Wang et al.
(2020) decompose the original image into multiple semantic and instance segments, which have very
consistent depth structures and thus, are easier inputs for depth estimation. Finally, they propose
a depth aggregation pipeline which combines depths maps at category and instance levels with a
bottom-up approach (instanceÑ categoryÑ global) to output global depth predictions.

Strengths.

• Semantic Divide and Conquer: The paper proposes a powerful idea of decomposing the
overall depth estimation task for an image into its semantic constituents. Infact, the semantic
divide and conquer strategy proposed in this paper forms a major motivation behind my
recent work (Singh & Zheng, 2020) on using semantic guidance for learning to paint.
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• Novelity: The paper brilliantly utilizes the consistency of depth structures in low level
semantic/instance segments to propose an end to end training pipeline for monocular depth
estimation.

• Leveraging segmentation datasets: Monocular depth estimation heavily relies on learning
strong scene priors. Since, densely annotated depth datasets are limited, the proposed
approach leverages large scale segmentation datasets to improve semantic understanding.

• Ablation Studies: The paper provides extensive ablation studies which highlight the impor-
tance of various model parts (Tab. 4) and the effect of segmentation data on depth prediction
(Fig. 8).

5 Variance Reduction in Policy Gradients

5.1 High-Dimensional Continuous Control Using Generalized Advantage Estimation

Conference. ICLR, 2016.

Merits. While this paper is a bit old, it presents an essential mathematical analysis of variance
reduction in policy gradient algorithms from the perspective of bias-variance tradeoff.

• Bias-variance Tradeoff: The paper presents a succinct mathematical formulation which
allows for controlling the bias-variance tradeoff in advantage function estimation using a
single hyperparameter (λGAE).

• Interpretation as reward shaping: The proposed formulation for advantage estimation
can also be viewed as computing a low-bias estimate of the advantage function for an MDP
with a steeper discount factor γ1 “ γλ. (Note that the steeper discount factor γλ essentially
removes variance introduced by all samples with delay greater than 1{p1´ γλq)

• Ease of implementation: The generalized advantage estimation method can be easily
integrated with standard policy gradient algorithms like PPO, TRPO, A3C etc, using only
few lines of code.
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