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1 Canonical Surface Mapping via Geometric Cycle Consistency. [ Link]

Summary. The paper tackles the problem of mapping image pixels to a category-specific canonical
3D model. Unlike previous methods, the proposed approach requires minimum supervision as it
utilizes the geometric consistency between the original pixels and the projection of the learned 3D
surface back to the image plane. Kulkarni et al. [5] also incorporate a multi-pose prediction pipeline
which solves the pose prediction and the canonical surface mapping problem in an end to end manner.

Strengths. 1. Learning without pose supervision: The proposed approach brilliantly alleviates the
need for camera pose annotations by proposing to incorporate a multi-hypothesis pose prediction
model in the overall geometric cycle pipeline. Furthermore, the authors use a diversity loss which
prevents the problem of mode-collapse in pose prediction while encouraging exploration.

2. Intuitive Examples: The authors consistently provide intuitive examples in order to motivate the
concepts introduced in the paper. e.g. why use visibility constraints? mask re-projection loss etc.

Weakness. 1. Visibility Constraints: First, The simultaneous application of L,;s and L. can lead
to opposing gradients for pixels p mapping to self-occluded regions on the 3D template. e.g. lets
say for a front facing bird, p is on the beak, whereas the 3D location ¢(C[p]) corresponds to the tail,
with p ~ p. Here, a gradient based L., would like the 3D mapping to remain the same, despite the
self-occluded nature of the projection. We hence suggest to use a masked cyclic loss as follows,
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Second, L,;s only discourages mapping to self-occluded 3D points. However, assuming a good
enough NMR [3], a much stronger supervision for 3D mapping can be obtained by enforcing the z
coordinate of the 3D point to be similar to the depth map at input pixel D [p] (not D, [p]). We thus
propose to use a depth consistency loss defined as: Lyepin, = || 2p — Dx[p] ||2-

2. Confidence measure for APK: The confidence in keypoint transfer is measured as the inverse of
the distance of between the source and target keypoint on the 3D template. However, for the same
error in prediction, we would like the confidence to be high for regions on 3D model with relatively
few keypoints (e.g. a birds tail), whereas the confidence should be relatively low for regions with high
density of keypoints (e.g. a birds face with closely placed eyes and beak). We thus propose to model
the confidence as the softmax over inverse distances computed from the K nearest source keypoints.

3. Synthetic data for better evaluation: The paper mentions unavailability of ground truth templates
as a hindrance in directly evaluating model predictions. However, this could have been easily
overcome by using synthetic datasets like [7], to evaluate the correctness of the learned 3D shape.

Opportunities. Adding to suggestions above, this work can be extended to instances with deformable
shapes by learning a parameterizable 3D model. We also suggest introducing self-supervision through
videos with an optical flow consistency loss between p from current frame and p for the next frame.

Broader Impact. In addition to fostering development of graphical applications which use 3D
understanding for photo-editing purposes, the proposed work has great potential to improve the safety
of self-driving cars by estimating the 3D pose of the nearby vehicles. Since, the exact 3D model
of the (nearby) vehicles is not required, a canonical surface mapping to a standard 3D car template,
should provide sufficient information to estimate the 3D pose of a nearby vehicle.


https://arxiv.org/pdf/1907.10043.pdf

2 PifPaf: Composite Fields for Human Pose Estimation. [Link]

Summary. The paper [4] tackles the problem of multi-person 2D human pose estimation for images
with low resolution. The proposed method follows a bottom-up approach which uses Part Intensity
Fields to predict the body part locations (with their relative scales), and a Part Association Field to
learn the association between the predicted joints. Finally, Kreiss ef al. [4] use the Laplace loss as an
adaptive regression strategy to reduce the localization error for joints with lower scale (o) / spread (b).

Strengths. 1. Novelty: The paper through Fig. 6 (top row, waving gesture) successfully demonstrates
the practical importance of requiring accurate pose estimation while dealing with low resolution
images. Furthermore, the proposed method, by learning scale parameters for both joint location and
associations, is able to adopt a novel loss which reduces localization errors at smaller scales.

2. High quality visualizations: Qualitatively comparing pose prediction results, especially in
overcrowded scenes, can be quite challenging. Nevertheless, the paper presents several high quality
visualizations (refer Fig. 6,7,8) which crisply demonstrate the merits of the proposed method.

Weakness and Opportunities. 1. Clarity: First, the authors fail to explain the difference between
the spread b and the scale o learned through Part Intensity Fields. This is especially confusing, as both
o and b are used, as a measure of the scale of a joint, while computing the smooth-L1 and Laplace loss
respectively. Second, the paper does not provide an adequate explanation for the significance of the
width parameters (b;, bo) in the Part Association Fields and their difference with the corresponding
spread parameters from Part Intensity Fields. Moreover, it seems that width parameters in PAF are
not required and can be replaced by the spread parameter from the PIF of the first joint in Eq. 3.

2. Part Intensity Fields: The expression for confidence map f(z,y) in Eq. 3 can be understood as a
Gaussian Mixture Model with number of clusters equal to the number of pixels, cluster probabilities
pid, cluster means (p%, p}/) and standard deviation p/. However, there are couple of problems with
the current formulation. First, the expression for f(z,y) in Eq. 3 should be normalized as } _, j p%
need not sum to one. Otherwise, it contradicts the heatmap range shown in Fig. 3c. Second, the
authors currently assume a per-pixel spherical Gaussian distribution with > = diag(p¥/, p/). That is,
they assume that the confidence scores vary uniformly along all directions from a given joint location.
However, this is trivially incorrect. For e.g. we expect the confidence scores to reduce more slowly
along the direction of the arm for a shoulder joint. A better confidence map can thus be learned by
estimating three scale parameters (instead of one) to form a general representation for X%,
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3. Inadequate Baselines: First, the paper uses only two non state of the art baselines to demonstrate
the merits of the proposed approach. We thus, suggest the authors to include more recent works like
[1, 2, 6, 8]. Second, the paper specifically mentions (Tab. 1) that Mask R-CNN was retrained for low
resolution images. This raises some ambiguity on whether the same was done while reporting values
for the OpenPose model, especially given the large skeletons detected by OpenPose in Fig. 6.

4. Abalation Studies: The paper fails to ascertain whether the proposed improvements result merely
from adoption of a scale dependent regression loss versus the PifPaf formulation. Thus, the paper
should include further experiments to shed light on the importance of predicting scale parameters
through the part intensity and association fields. A possible ablation study should report results from
MaskR-CNN with smooth-L1 loss where 7,,,00t1 1S proportional to the area of the bounding box.

Opportunities for improvements. First, as mentioned above, we suggest to extend the proposed
approach to model non-spherical Gaussian distributions while modeling the high-resolution confi-
dence map. Second, the idea of scale-dependent loss functions could be extended to perform object
detection and segmentation on low resolution images with Mask R-CNN, wherein the relative loss for
bounding box corrections and class segmentation is scaled by the inverse of the bounding box area.

Broader Impact. As advertised in the paper, the proposed approach promises to have a huge impact
in the development of self-driving cars. Accurate pose estimation at lower scales would enable the
car to identify pedestrian gestures from a much greater distance, thus allowing more time for evasive
actions if required. The ability to work with lower resolutions also implies faster processing times.
Thus, this work would foster the development of real-time gesture recognition systems. A salient
application would be violence detection in over-crowded areas through public surveillance videos.


https://openaccess.thecvf.com/content_CVPR_2019/papers/Kreiss_PifPaf_Composite_Fields_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
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