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1 Paper 1: SDC-Depth: Semantic Divide-and-Conquer Network for
Monocular Depth Estimation. [Link]

Summary. The paper [10] tackles the problem of monocular depth estimation by incorporating scene
priors from semantic and instance segmentation with a divide and conquer strategy. Wang et al.
[10] decompose the original image into multiple semantic and instance segments, which have very
consistent depth structures and thus, are easier inputs for depth estimation. Finally, they propose
a depth aggregation pipeline which combines depths maps at category and instance levels with a
bottom-up approach (instance→ category→ global) to output global depth predictions.

Strengths. 1. Novelity and leveraging segmentation datasets: First, the paper brilliantly utilizes
the consistency of depth structures in low level semantic/instance segments to propose an end to end
training pipeline for monocular depth estimation. Second, monocular depth estimation heavily relies
on learning strong scene priors. Since, densely annotated depth datasets are limited, the proposed
approach leverages large scale segmentation datasets [7] to improve semantic understanding.

2. Ablation Studies: The paper provides extensive ablation studies which highlight the importance
of various model parts (Tab. 4) and the effect of segmentation data on depth prediction (Fig. 8).

Weakness. 1. Instance-wise depth transformation: The authors claim to learn the instance level
transformations Hi(.) (from local to global depth), using only ROI Align features (that are local
to the bounding box for each instance) and normalized bounding box coordinates. While this may
suffice for certain cases, in general, accurate computation of this transformation would clearly require
global context information. e.g. the depth offsets would be high in a large room and vice versa.

2. Relative weight-age between instance and category depths: The high value of the parameter
ν in Eq. 1 is concerning because for ν = 10 and reasonable pi, mostly instance depth information
would be retained after category-instance depth aggregation. For instance, the relative weight-age for
the instance level depth map would be as high as ≈ 90% (5/6) for a very low pi = 0.5. This means
that, essentially, the proposed method uses instance depth maps for K object class categories and
category-level depth maps for non-object classes. Thus, the paper should have an analysis measuring
variation in performance metrics as ν is reduced, to shed more light on this problem.

Opportunities for improvements. Modelling uncertainty in instance depth prediction: As dis-
cussed above, the depth aggregation strategy for instance and category level depth maps has a very
high weight-age ν for instance maps. Ideally, we would like to modify this weightage based on the
model’s confidence in predicted instance depths. The current model uses only pi (probability of the
ith instance belonging to category ci), as a measure of uncertainty in the instance-level depth maps.
To this end, we suggest to model the parameters of the affine instance level transformation Gi(.) by a
unimodal gaussian distribution, wherein the relative weightage of instance level depth map in Eq. 1,
would be proportional to the prediction confidence (or inversely proportional to distribution entropy).

Broader Impact. While this work promises to be of key value in industrial computer vision
applications like photo-editing and self-driving cars, its low-level societal impacts would extend far
beyond that. For instance, this work can be used to improve the development of assistive technologies
for the visually impaired e.g. obstacle detection [8] apps using depth estimation. Furthermore, this
method can be easily incorporated into assistive scene-understanding devices, which already rely on
segmentation results for semantic understanding.

https://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_SDC-Depth_Semantic_Divide-and-Conquer_Network_for_Monocular_Depth_Estimation_CVPR_2020_paper.pdf


2 Paper 2: 6D Camera Relocalization in Ambiguous Scenes via Continuous
Multimodal Inference. [Link]

Summary. The paper [3] tackles the problem of measuring uncertainty for the 6 DoF camera pose
estimation problem in ambiguous environments. The traditional regression strategy [2] doesn’t
provide a measure of confidence in the camera pose predictions and to this end, Bui et al. [3] propose
to model the distribution for rotation and translation parameters using Bingham and Gaussian mixture
models, respectively. Furthermore, [3] adopt the RWTA [9] loss function to avoid the problem of
mode-collapse as seen in Mixture Density Networks (MDNs) [1] and MC-dropout [6] models.

Strengths. 1. Novelity: The paper successfully highlights an important problem on the limitation of
previous camera-pose estimation methods in ambiguous scenes, containing multiple ground truth
symmetries. In addition, the proposed training scheme allows for learning a diverse multi-modal
distribution with deep neural networks, which can be applied to several other research applications.

2. Consistency of initial assumption with results: The authors, through Fig. 3, corroborate their
initial assumption by showing high correlation between model uncertainty and prediction error. This
consistency between results and assumptions, increases our confidence in the proposed method.

3. High quality visualizations: Despite its mathematically intense nature, the paper contains high
quality figures (Fig. 1,4,6) that support the intuitions and concepts conveyed throughout the paper.

Weakness. 1. Inference: The method for pose prediction at test times (Section 5) is slightly flawed.
The paper selects the optimal cluster as the mode of the cluster with the highest cluster probability
πj(Xi,Γ). However, the probability of a cluster mode, in addition to the cluster probability πj(Xi,Γ),
also heavily depends on the unimodal variance |Σj | of the particular cluster. Thus, a possibly better
metric for hypothesis selection, at inference time, could be given by,

Used in paper: arg max
j

πj(Xi,Γ), Suggested: arg max
j

πj(Xi,Γ)

|Σj |1/2
. (1)

2. Evaluation metrics: The oracle error (Section 6) is biased to favor multi-modal distributions with
high uncertainty, e.g. oracle accuracy would be high even if the RWTA method has high uncertainty
for modes closest to the ground truth. Also, instead of accuracy with respect to the ground truth, it
would be better to predict the correctness of a pose hypothesis, by computing the similarity between
the query image and the image captured from the estimated pose, in the latent feature space (Fig. 2).

3. Concerns about Table 4: The values reported in Tab. 4 would vary highly with the 3D scene and
number of ground truth symmetries. For instance, for the dining table dataset (Fig. 4) with only 2
ground truth symmetries, the proposed method would have a very low (≈ 0.04) fraction of correctly
predicted modes. This would make it hard to demonstrate the differences between discussed methods.
Instead, we suggest that if the number of ground truth symmteries is G, the % correctly predicted
modes be computed on only the top G modes (ranked by uncertainity) predicted by the model.

4. RWTA for non-ambiguous scenes: The paper trains only unimodal and BMDN (practically
unimodal) methods for the non-ambiguous dataset. Since, in practical applications, the ambiguity is
not predetermined, it would be interesting to see if the RWTA method does at least as well.

Opportunities for improvements. First, As mentioned in Section 6.1 and Fig. 3, the model
uncertainty shows high correlation with the prediction error. We can use this result to adopt a hard
sample mining approach similar to Ding et al. [4] and increase the weightage of samples Xi with high
entropy (refer Eq. 15) in the batch computation of RWTA loss. This would make the model focus
more on hard examples during training. Second, the camera pose distribution shows high uncertainty
when conditioned on a single query image. We thus propose to use sequential learning and recurrent
neural networks to reduce this uncertainty based on trajectories leading to the ambiguous query.

Broader Impact. The proposed work promises significant impact in the thriving computer vision
industry focusing on socially high demand applications like augmented reality, human computer
guidance and robot guidance in an indoor environment with high ambiguity. For instance, in
the social healthcare industry, a caretaker robot [5] must learn to localize its position in possibly
ambiguous indoor environments. Recognition of samples having low certainty can help indicate to
the robot to look for additional cues to determine its current location. Similarly, a self-driving car
facing uncertainty in camera relocalization could rely on other sensory measurements like lidar, for
determining its current location in the 3D scene.
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