
Enhanced Scene Specificity with Sparse Dynamic
Value Estimation

Jaskirat Singh & Liang Zheng
College of Engineering and Computer Science

Australian National University
Canberra, Australia

jaskirat.singh,liang.zheng@anu.edu.au

Abstract

Multi-scene reinforcement learning involves training the RL agent across multiple
scenes / levels from the same task, and has become essential for many generalization
applications. However, the inclusion of multiple scenes leads to an increase in
sample variance for policy gradient computations, often resulting in suboptimal
performance with the direct application of traditional methods (e.g. PPO, A3C).
One strategy for variance reduction is to consider each scene as a distinct Markov
decision process (MDP) and learn a joint value function dependent on both state s
and MDP M. However, this is non-trivial as the agent is usually unaware of the
underlying level at train / test times in multi-scene RL. Recently, Singh et al. [1]
tried to address this by proposing a dynamic value estimation approach that models
the true joint value function distribution as a Gaussian mixture model (GMM). In
this paper, we argue that the error between the true scene-specific value function
V ps,Mq and the predicted dynamic estimate V̂ ps,Mq can be further reduced by
progressively enforcing sparse cluster assignments once the agent has explored most
of the state space. The resulting agents not only show significant improvements in
the final reward score across a range of OpenAI ProcGen environments, but also
exhibit increased navigation efficiency while completing a game level.

1 Introduction

Training on environments comprising of multiple scenes / variations from the same domain task
(e.g. different levels from a video game), has become a powerful strategy for countering over-fitting
in deep reinforcement learning [2–8]. However, such an approach comes at the price of increased
sample variance in policy gradient computations [9, 10]. The high variance necessitates using more
samples [11], and thus, training high performance agents on these environments [9, 12–15] invariably
involves increasing the sample size per update step through the use of multiple parallel actors [16–18].
While parallel sample collection helps in stabilizing the learning process, the obvious disadvantages
of lower sample efficiency and higher hardware constraints, suggest the need for specialized variance
reduction techniques in multi-scene RL.

One such strategy is to replace the traditionally used scene-generic value function V psq with a scene-
specific estimate V ps,Mq while computing the advantage function [1]. However, in the absence of
information about the operational scene at train / test times, learning the scene-specific value function
presents a challenging problem. Recently, Singh et al. [1] showed that while a fine estimation of
the joint value function is not feasible, a coarse approximation can be obtained by dividing the
value function distribution into multiple clusters and then using episode trajectories to predict the
assignment of the current state to each cluster (refer Section 2.2 for details).

Preprint. Under review.

High Overlap

Original Dynamic Model

Low Overlap

Sparse Dynamic Model

Figure 1: (Left) The clusters tC1, C2...CNu originating from the original dynamic value estimation [1]
can be approximated as multi-variate gaussian functions in ps, V ps,Mqq space. The overlap regions
correspond to points of high confusion and are usually characterized by critical states / tricky
obstacles [1]. We claim that such an overlap constitutes a waste of information available for joint
value estimation and can be avoided by increasing the spread of learned cluster means (Right).

In this paper, we show that the scene-specificity of the dynamic value estimates can be further
enhanced by enforcing sparse cluster assignments, once the agent has explored most of the state
space and thus learned a good enough approximation of the cluster parameters. The sparse cluster
probabilities along with application of traditional value function loss, have a combined effect of
spreading out the learned clusters in ps, V ps,Mqq space. We claim that the adjustment of dynamic
clusters in this manner reduces the overall value function prediction error and support it with extensive
testing on OpenAI ProcGen [9] environments. Fig. 1 provides an overview of our method.

The main contributions of this paper are summarized as follows.

• We introduce a novel confusion-contribution loss for improving dynamic value estimation
(DVE) [1]. The proposed loss decreases the overlap between learned dynamic clusters by
progressively enforcing sparse cluster assignments.

• We demonstrate that the sparse clusters divide the overall state space into distinct sets of
game skills. The collection of these skills represents a curriculum that the agent must master
for effective game play.

• By comparing the game level trajectories for the non-sparse and sparse dynamic models, we
show that the high navigation efficiency of our method and its tendency to limit unneces-
sary exploration, presents an effective alternative to explicit reward-shaping [19–21], for
penalizing longer episode-lengths / reward-horizons in multi-scene reinforcement learning.

2 Relevant Background

2.1 Problem Setup

The multi-scene learning problem is characterized by a set of MDPs M : tM1,M2...MNu. Each
MDP M is defined by state space SM, transition probabilities PMpst`1|st, atq, reward function
rMpst, at, st`1q, discount factor γ and the common action space A. The agent with policy πpa|sq
then interacts with a randomly chosen MDP to generate a trajectory τ : ts0, a0, s1, a1, ...sT u with
total discounted reward Rτ “

řT´1
t“0 γ

trpst, at, st`1q. We aim to learn a policy π˚ such that the
expected reward over the tuples pM, τq is maximized, i.e., π˚ “ argmaxπ Eτ,M rRτ,Ms.

2.2 Revisiting Dynamic Value Estimation

Singh et al. [1] show that the true value function distribution across different scenes resembles a
Gaussian Mixture Model and thus can be divided into clusters. The main idea of dynamic value
estimation is to enforce muti-modal distribution learning by modelling the scene-specific value
function as weighted sum over the mean value estimates for these clusters. Mathematically,

2

V̂ pst,Mq “

Nb
ÿ

i“1

αipst, τ
t´q V̂ipstq s.t. αi ą 0,

Nb
ÿ

i

αi “ 1, (1)

where τ t´ is the trajectory till time pt´ 1q, Nb is the number of clusters and αi, V̂ipsq represent the
cluster assignments and the value function mean for the ith cluster, respectively.

From a qualitative perspective, [1] also show that the distribution of cluster assignments (αi) provides
important intuition about the nature of states, and define two metrics to analyse the same, confusion
and contribution. Confusion (δ) is a measure of uncertainty as to which cluster, the current state-
trajectory pair tst, τ t´u belongs to. On the other hand, contribution (ρ), as the name suggests,
determines the ‘contribution’ of a cluster in the overall value function estimation across a general
trajectory sequence τ : ts0, a0, s1, a1, ...sT u. Formally, confusion and contribution are defined as,

δpst, τ
t´q “

1

Nb.
ř

i α
2
i pst, τ

t´q
, ρipτq “

1

T

T
ÿ

t“1

δpst, τ
t´q αipst, τ

t´q. (2)

3 Motivation

3.1 Minimizing Cluster Overlap

As shown in Fig. 1, we note that the original dynamic model leads to clusters with high overlap (high
confusion) at critical states [1]. The high confusion states are usually characterized by presence of
tricky obstacles / scenarios and are critical to the final episode reward. Given the value estimation
model from Eq. 1, it is understandable that the use mean squared error critic loss drives multiple
cluster centers towards the true value of these critical states. However, such a behavior is undesirable
as it reduces the range of value estimates V̂ ps,Mq covered through interpolation among cluster
means in Eq. 1. Fig. 2 explains how the spread of dynamic cluster means affects the prediction error
||V ps,Mq ´ V̂ ps,Mq|| across M PM. Consequently, we conjecture that the overall prediction
error can be reduced by minimizing the overlap between the learned dynamic clusters.

Wider
Prediction

Range

Narrow
Prediction

Range

High Overlap Clusters Low Overlap Clusters

Figure 2: Qualitative Analysis. The dynamic value prediction model from Eq. 1 can be interpreted
as the interpolation (using αi) across the learned cluster means V̂ipsq. Thus, as seen above, the
prediction error is usually low in the range covered by the cluster centers. The original dynamic
clusters with their high overlap are similar to the distribution shown on left, and have a very narrow
range of low prediction error. As shown on the right, this region of low prediction error can be
expanded by increasing the spread of learned dynamic cluster means.

3.2 Correlation Analysis

As the clusters move far apart from each other, the cluster assignments αi for a given tuple ps, τ´q

tend towards a one-hot encoding, with the one corresponding to the closest cluster. This implies

3

that a higher spread in cluster means corresponds to a sparser cluster assignment distribution and
can be measured using the confusion δ (refer Eq. 2). Hence, to test the initial validity of the above
analysis, we compute the correlation between final model performance and inverse confusion (1{δ),
while training on OpenAI’s ProcGen [9] environments. The samples for this testing are collected
randomly during the first 50M timesteps of training across 4 distinct runs with the original dynamic
model. The Pearson correlation [22] coefficients for various ProcGen games are shown in Fig. 3. The
results clearly corroborate our analysis from section 3.1 and show a high correlation between reduced
confusion and improved model performance.

Figure 3: Results showing Pearson correlation [22]
coefficient prq between inverse confusion p1{δq
and total reward score pRq. For most games the
correlation coefficient is greater than 0.5, which
points to the statistical significance of the analysis
done in section 3.1. We next demonstrate how
the original dynamic training can be modified to
achieve lower confusion in cluster assignments.

4 Sparse Dynamic Value Estimation

Given the analysis from Section 3.2, we note that increasing the inter-cluster mean variance leads
to sparser cluster assignment distribution. We claim that the reverse is also true, i.e., an appropriate
spread in learned cluster means can be obtained by progressively enforcing sparse cluster assignments
followed by adjustment of cluster means. Fig. 4 illustrates this process on a sample GMM distribution.

C1
C2

C3

Figure 4: Illustration. Example showing how sparse cluster assignments help in reducing the overlap
between clusters learned by the dynamic model. (Left) Each point ps,Mq is allocated to the most
probable cluster based on the cluster assignments αi. (Right) The means of each cluster adjust to
reflect the expected value estimate of all ps,Mq pairs in the modified cluster assignments. Note that
the hard sparse assignment is for illustration purposes only. In practice, the sparsity is introduced
progressively as the new cluster means are learned through the value function loss.

4.1 Enforcing Sparsity

The sparsity condition is equivalent to maximization of the L2 norm for cluster assignments
tα1, α2, . . . αNb

u and thus using Eq. 2, corresponds to minimal confusion (δ). However, we note
that a mere enforcement of sparsity may encourage convergence to solutions where only one of the
clusters is active. We also want to ensure that each cluster contributes equally in the ps,Mq space.

4

To achieve this, we propose the following confusion-contribution loss,

LCC “ k1 Est,τt´

“

log δpst, τ
t´q

‰

` k2 Eτ

«

log

˜

Nb
ÿ

i

ρ2i pτq

¸ff

. (3)

We must emphasize that the state space must have already been well explored by the agent, prior to
the application of confusion-contribution loss. If applied prematurely, due to the continuous nature of
neural networks, the sparse cluster assignment is incorrectly generalized across the entire state space.
This would lead to a detrimental impact on value function estimation for the currently unexplored
states. Also, such a mistake is hard to recover from, because for any state s, the sparse assignment
ensures that the gradients for all but one cluster are approximately zero.

5 Evaluation on OpenAI ProcGen

5.1 Experimental Design

Training Details. The network design for the dynamic model is quite similar to the one described
in [1]. The states are fed through an IMPALA-CNN [23] + LSTM [24] network to output a joint
latent representation, used for learning both the policy and the value function. The critic network uses
these latent representations to predict cluster assignments αi and mean value estimates V̂ipsq. Finally,
the predicted value function V̂ ps,Mq is computed using Eq. 1. Similar to [9], the agent is trained
using Proximal policy optimization (PPO) [25] with 4 parallel workers. The only point of difference
with the original dynamic model is the application of confusion-contribution loss pLCCq at a suitable
stage in the training process. The loss coefficients pk1, k2q determine the balance between confusion
and contribution, and are chosen through extensive hyper-parameter search for each environment.

We test our method on 8 ProcGen [9] environments: CoinRun, CaveFlyer, Climber, Jumper, Plunder,
Dodgeball, FruitBot and StarPilot. Note that each game is characterized by a different rate of state
exploration and training trajectories. Thus, depending upon the type of environment, we adopt the
following strategies for obtaining sparse boosts.

Pre-boost. For games allowing rapid state space exploration at the beginning, the confusion-
contribution loss can be applied quite early to promote sparsity. In fact, because the policy gradient
and value function loss dominate the initial training updates, we apply the confusion-contribution
loss from the start. However, the coefficients pk1, k2q are kept moderately small so as to encourage
the network to progressively converge to a sparse cluster assignment over the first quarter timesteps.
CoinRun, CaveFlyer, Climber and Jumper belong to this set and are labelled as class-1 environments.

Post-boost. In contrast, other games display a much more gradual expansion of explored state space,
exhibiting a positive correlation between episode lengths and the total reward. Sparse-boosting for
such environments, can only be applied after the rate of increase of average episode length has
declined. Thus, the application of confusion-contribution loss is usually preceded by pre-training
with the original dynamic model for 50M timesteps (per worker). Games like Plunder, Dodgeball,
FruitBot and StarPilot are part of this set and are labelled as class-2 environments.

We also train the vanilla-LSTM based RL2 [24] and non-sparse dynamic models from [1], to show a
comprehensive comparison between model performances. For consistency reasons, a pre-training
procedure same as the one described above is followed, for all class-2 environments. All results are
reported as an average across 4 distinct runs using 500 levels for training.

5.2 Results

Class-1. The sparse model leads to consistent performance improvements in all 4 class-1 environ-
ments. Fig. 5 shows the total reward and average episode length curves during the training process for
the Caveflyer environment. We clearly see that sparse training leads to significant gains in both final
reward and sample efficiency over the regular dynamic model. For instance, we report an increase of
28.3% and 22.4% in the final episode reward, over the non-sparse dynamic model, for the games of
CaveFlyer and Climber respectively (refer Table 1).

5

Figure 5: Learning curves for RL2, sparse and non-sparse dynamic models, illustrating differences in
sample efficiency, total reward and and episode lengths.

Total Reward Episode Length

Class Environment RL2 DVE Sparse DVE RL2 DVE Sparse DVE

Class 1

CoinRun 7.75 9.16 9.62 126 78.99 62.1
CaveFlyer 6.82 9.02 11.57 225.6 275.1 75.2
Climber 7.50 8.14 10.17 178.1 226.6 170.5
Jumper 6.61 6.52 6.65 236.4 180.3 78.9

Class 2

Plunder 7.13 17.16 18.42 495.1 780.6 739.4
DodgeBall 10.98 11.25 12.76 401.5 459.9 285.8
FruitBot 7.33 18.32 23.08 172.1 364.5 374.2
StarPilot 17.94 18.08 19.81 327.6 342.9 320.2

Table 1: Performance comparison in final reward and average episode length for both class 1 and 2
environments. Our method achieves higher total rewards while needing much shorter episode lengths.

Furthermore, as shown in Fig. 5 and Table 1, the sparse model leads to better reward scores while on
average, using much fewer timesteps per episode1. We call this phenomenon as enhanced navigation
efficiency and delve into it in detail in Section 7.

Class-2. Fig. 5 reports the results for the FruitBot (class-2) environment using the post-boost strategy.
While the baseline RL2 and non-sparse dynamic models show a saturation in model performance
with the extended training protocol, the sparse model loss leads to continued gains in reward scores.
Interestingly, we also see that a saturation in rate of state space exploration is necessary for getting
gains with the sparse model. This is illustrated through the training curves for the game of FruitBot
(refer Fig. 5), where relative gains over the non-sparse model occur only after a decline in the rate of
increase of average episode length.

For sake of completeness, we report the results for all class-1 and class-2 environments in Table 1.

6 What are Clusters Made of?

Given the non-sparse nature of original cluster probability distribution, Singh et al. [1] use the
normalized contribution scores as a measure of similarity between the basis MDPs [1] and a particular

1Note that the ProcGen environments have no explicit penalty for longer episode lengths.

6

C
lu

st
er

 1

Skill 1 Skill 2

C
lu

st
er

 2
C

lu
st

er
 3

Figure 6: Examples of key obstacles types learned by the each cluster in the CoinRun Environment.
We note that the sparse training divides the overall state space into a distinct sets of game skills.

game level. However, such a comparison is not helpful in understanding the key features that
differentiate each basis cluster. In this section, we use the sparse property of our method to visualize
different obstacle types characteristic of each cluster in the CoinRun Environment.

To visualize the distinguishing features for each cluster, we first extract the set of states Si for which
each cluster is active. The latent representations (output of the LSTM network) for these states are
used to map each s P Si to a two dimensional embedding space using TSNE [26]. This embedding is
then manually analysed for clusters to the identify the salient obstacle classes.

Fig. 6 shows some key obstacle types for each cluster. We observe that each cluster is responsible
for predicting the value function on a distinct set of obstacles / skills. For instance, cluster-1 is
responsible for value estimation in cases like double-jump from one side to another (skill-1) and
crossing over moving enemies (skill-2). On the other hand, cluster-2 handles landing after jumps from
higher ground (skill-1) and high jumps with very limited visibility of the coming obstacles (skill-2).
Finally, cluster-3 takes care of precision climbs (skill-1) and jumps over wide valleys (skill-2).

Thus, we see that each disjoint state space set Si, i P r1, Nbs represents a distinct curriculum of game
skills that must be learned for mastering the overall multi-scene game environment. This division is
analogous to human learning where it is quite common to break down a complex task into a set of
manageable skills before attempting the complete task.

7 Navigation Efficiency

A peculiar feature arising as a result of applying sparse boosting can be seen in terms of improved
navigation efficiency. That is, the agent on average uses fewer time-steps per episode while achieving
similar or better reward score. This massive difference in time-steps results from two reasons:

7

Non-sparse DVE Sparse DVE

Figure 7: Demonstrating qualitative difference between trajectories for sparse and non-sparse dynamic
agents. Our method shows higher efficiency in navigating to the final goals (red & green spheres).

• The tendency to use fewer time-steps is a direct consequence of optimizing the discounted
reward function with γ ă 1 [11]. As a result, the agent is incentivized to minimize the
number of steps between the current state and the next reward. Hence, more accurate policy
updates (lower sample variance) should lead to fewer timesteps.

• As explained in Section 4, the expansion in state space after application of confusion-
contribution loss can lead to potential errors in value function estimation. Thus, the sparse
dynamic agent learns to maximize the utilization of already explored state space.

In this section, we will analyse the first point in greater detail. We first note that not all critical game
states correspond to a high overlap region in the non-sparse dynamic model. At a critical state with
low overlap (and possibly high value prediction error), the computation of suboptimal value function,
can lead the agent to underestimate the advantage of choosing an action leading to a faster route to the
final destination / goal. We next try to identify these critical states by comparing episode trajectories
for the sparse and non-sparse dynamic agents on the CaveFlyer environment.

Game Description. The goal of the Caveflyer environment is to destroy the red spheres and finally
reach the green sphere while avoiding intermediate obstacles. The agent receives a small reward of
+3 on destroying a red sphere and an end of episode reward of +10 on successfully reaching the green
one. Direct collisions with an obstacle or the red sphere cause immediate episode termination.

Trajectories for both sparse and non-sparse dynamic agents are shown in Fig. 7. We see that the
non-sparse agent after destruction of the red sphere (critical state), effectively restarts its search for
the next target, while often revisiting already encountered states. In contrast, the sparse agent with its
more accurate value estimates, realizes that the expected value for exploring unseen parts of the cave
is much higher than revisiting previous states. Doing so not only helps the sparse agent in reaching
the end goals much faster, but also eliminates the need for evading obstacles it has already crossed.

We also note that, the balance between the sparse model’s reluctance towards state space expansion and
maximization of total reward can be modulated through the coefficients of the confusion-contribution
loss. In this regard, the high navigation efficiency of our method provides an effective alternative to
designing explicit reward shaping [19] penalties for promoting reduced episode lengths.

8 Conclusion

This paper introduces a novel confusion-contribution loss which improves the efficiency of the recently
proposed dynamic value estimation method, by progressively learning sparser cluster assignments.
The resulting dynamic clusters contribute equally to the overall value function estimation and display
minimal inter-cluster overlap. The proposed approach consistently outperforms the vanilla-LSTM
based RL2 and non-sparse dynamic models on a range of OpenAI ProcGen environments, while on
average using much fewer timesteps per episode to complete a game level. Additionally, the sparse
training divides the overall state space into disjoint subsets. We show that each subset focuses on a
distinct set of game-skills, which draws a strong parallel with the human learning paradigm.

8

Broader Impact

While this work is largely theoretical, we believe that in the long term, it will have major impact in the
upcoming area of AI-inspired learning [27]. Recent years have seen the field of deep reinforcement
learning demonstrate tremendous success in achieving super-human performance in complex game
play. Deepmind’s Alphazero [28], Alphastar [29] and OpenAI’s Dota-2 [30] are some salient
examples. Each such milestone is followed by an increased public interest to analyse and break
down the policy of the trained RL agent into a set of simple skills than can be consumed by a human
learner [27, 31]. This process is often manual and involves painstaking analysis across hundreds
of game runs. As shown in Section 6, our method does this automatically by dividing the possible
game scenarios (states) into distinct sets of game skills. While each set can be composed of other
mini-skills, the broad division achieved by our method promises great potential in the development
of semi-automatic, AI-inspired teaching tools for human players.

References

[1] J. Singh and L. Zheng, “Dynamic value estimation for single-task multi-scene reinforcement
learning,” 2020.

[2] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying generalization in
reinforcement learning,” arXiv preprint arXiv:1812.02341, 2018.

[3] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and S. Risi, “Illuminating
generalization in deep reinforcement learning through procedural level generation,” arXiv
preprint arXiv:1806.10729, 2018.

[4] A. Zhang, N. Ballas, and J. Pineau, “A dissection of overfitting and generalization in continuous
reinforcement learning,” arXiv preprint arXiv:1806.07937, 2018.

[5] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A study on overfitting in deep reinforcement
learning,” arXiv preprint arXiv:1804.06893, 2018.

[6] M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin, and K. Hofmann, “Generalization
in reinforcement learning with selective noise injection and information bottleneck,” in Advances
in Neural Information Processing Systems, pp. 13956–13968, 2019.

[7] C. Packer, K. Gao, J. Kos, P. Krähenbühl, V. Koltun, and D. Song, “Assessing generalization in
deep reinforcement learning,” arXiv preprint arXiv:1810.12282, 2018.

[8] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real image,” arXiv
preprint arXiv:1611.04201, 2016.

[9] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedural generation to bench-
mark reinforcement learning,” arXiv preprint arXiv:1912.01588, 2019.

[10] X. Song, Y. Du, and J. Jackson, “An empirical study on hyperparameters and their interdepen-
dence for rl generalization,” arXiv preprint arXiv:1906.00431, 2019.

[11] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous
control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[12] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi, “Ai2-thor: An interactive 3d environment for visual ai,” arXiv
preprint arXiv:1712.05474, 2017.

[13] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta learn fast: A new benchmark
for generalization in rl,” arXiv preprint arXiv:1804.03720, 2018.

[14] A. Juliani, A. Khalifa, V.-P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi, J. Togelius, and
D. Lange, “Obstacle tower: A generalization challenge in vision, control, and planning,” arXiv
preprint arXiv:1902.01378, 2019.

[15] C. Beattie, J. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq, S. Green,
V. Valdés, A. Sadik, et al., “Deepmind lab. arxiv 2016,” arXiv preprint arXiv:1612.03801, 2016.

[16] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex environments,” arXiv preprint
arXiv:1611.03673, 2016.

9

[17] M. Wortsman, K. Ehsani, M. Rastegari, A. Farhadi, and R. Mottaghi, “Learning to learn how
to learn: Self-adaptive visual navigation using meta-learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6750–6759, 2019.

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous methods for deep reinforcement learning,” in International conference on ma-
chine learning, pp. 1928–1937, 2016.

[19] A. D. Laud, “Theory and application of reward shaping in reinforcement learning,” tech. rep.,
2004.

[20] A. Laud and G. DeJong, “The influence of reward on the speed of reinforcement learning: An
analysis of shaping,” in Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pp. 440–447, 2003.

[21] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations: Theory
and application to reward shaping,” in ICML, vol. 99, pp. 278–287, 1999.

[22] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise reduction
in speech processing, pp. 1–4, Springer, 2009.

[23] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al., “Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures,” in International Conference on Machine Learning, pp. 1407–1416, 2018.

[24] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “Rl2: Fast reinforce-
ment learning via slow reinforcement learning,” arXiv preprint arXiv:1611.02779, 2016.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[26] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning
research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[27] M. Sadler and N. Regan, Game Changer: AlphaZero’s Groundbreaking Chess Strategies and
the Promise of AI. New in Chess, 2019.

[28] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[29] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster level in starcraft ii using multi-agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[30] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforcement learning,” arXiv
preprint arXiv:1912.06680, 2019.

[31] Deepmind, “Alphago teach.” https://alphagoteach.deepmind.com/, 2017.

10

https://alphagoteach.deepmind.com/

	Introduction
	Relevant Background
	Problem Setup
	Revisiting Dynamic Value Estimation

	Motivation
	Minimizing Cluster Overlap
	Correlation Analysis

	Sparse Dynamic Value Estimation
	Enforcing Sparsity

	Evaluation on OpenAI ProcGen
	Experimental Design
	Results

	What are Clusters Made of?
	Navigation Efficiency
	Conclusion

